Cargando…
Across-subject offline decoding of motor imagery from MEG and EEG
Long calibration time hinders the feasibility of brain-computer interfaces (BCI). If other subjects’ data were used for training the classifier, BCI-based neurofeedback practice could start without the initial calibration. Here, we compare methods for inter-subject decoding of left- vs. right-hand m...
Autores principales: | Halme, Hanna-Leena, Parkkonen, Lauri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031658/ https://www.ncbi.nlm.nih.gov/pubmed/29973645 http://dx.doi.org/10.1038/s41598-018-28295-z |
Ejemplares similares
-
Publisher Correction: Across-subject offline decoding of motor imagery from MEG and EEG
por: Halme, Hanna-Leena, et al.
Publicado: (2018) -
Comparing Features for Classification of MEG Responses to Motor Imagery
por: Halme, Hanna-Leena, et al.
Publicado: (2016) -
Adaptive neural network classifier for decoding MEG signals
por: Zubarev, Ivan, et al.
Publicado: (2019) -
Mapping and decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using MEG
por: Youssofzadeh, Vahab, et al.
Publicado: (2023) -
On electromagnetic head digitization in MEG and EEG
por: Jaiswal, Amit, et al.
Publicado: (2023)