Cargando…
Bioengineering Approaches for Bladder Regeneration
Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles repor...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032229/ https://www.ncbi.nlm.nih.gov/pubmed/29914213 http://dx.doi.org/10.3390/ijms19061796 |
_version_ | 1783337465730301952 |
---|---|
author | Serrano-Aroca, Ángel Vera-Donoso, César David Moreno-Manzano, Victoria |
author_facet | Serrano-Aroca, Ángel Vera-Donoso, César David Moreno-Manzano, Victoria |
author_sort | Serrano-Aroca, Ángel |
collection | PubMed |
description | Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting. |
format | Online Article Text |
id | pubmed-6032229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-60322292018-07-13 Bioengineering Approaches for Bladder Regeneration Serrano-Aroca, Ángel Vera-Donoso, César David Moreno-Manzano, Victoria Int J Mol Sci Review Current clinical strategies for bladder reconstruction or substitution are associated to serious problems. Therefore, new alternative approaches are becoming more and more necessary. The purpose of this work is to review the state of the art of the current bioengineering advances and obstacles reported in bladder regeneration. Tissue bladder engineering requires an ideal engineered bladder scaffold composed of a biocompatible material suitable to sustain the mechanical forces necessary for bladder filling and emptying. In addition, an engineered bladder needs to reconstruct a compliant muscular wall and a highly specialized urothelium, well-orchestrated under control of autonomic and sensory innervations. Bioreactors play a very important role allowing cell growth and specialization into a tissue-engineered vascular construct within a physiological environment. Bioprinting technology is rapidly progressing, achieving the generation of custom-made structural supports using an increasing number of different polymers as ink with a high capacity of reproducibility. Although many promising results have been achieved, few of them have been tested with clinical success. This lack of satisfactory applications is a good reason to discourage researchers in this field and explains, somehow, the limited high-impact scientific production in this area during the last decade, emphasizing that still much more progress is required before bioengineered bladders become a commonplace in the clinical setting. MDPI 2018-06-17 /pmc/articles/PMC6032229/ /pubmed/29914213 http://dx.doi.org/10.3390/ijms19061796 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Serrano-Aroca, Ángel Vera-Donoso, César David Moreno-Manzano, Victoria Bioengineering Approaches for Bladder Regeneration |
title | Bioengineering Approaches for Bladder Regeneration |
title_full | Bioengineering Approaches for Bladder Regeneration |
title_fullStr | Bioengineering Approaches for Bladder Regeneration |
title_full_unstemmed | Bioengineering Approaches for Bladder Regeneration |
title_short | Bioengineering Approaches for Bladder Regeneration |
title_sort | bioengineering approaches for bladder regeneration |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032229/ https://www.ncbi.nlm.nih.gov/pubmed/29914213 http://dx.doi.org/10.3390/ijms19061796 |
work_keys_str_mv | AT serranoarocaangel bioengineeringapproachesforbladderregeneration AT veradonosocesardavid bioengineeringapproachesforbladderregeneration AT morenomanzanovictoria bioengineeringapproachesforbladderregeneration |