Cargando…
UDP-Glucose 4-Epimerase and β-1,4-Galactosyltransferase from the Oyster Magallana gigas as Valuable Biocatalysts for the Production of Galactosylated Products
Uridine diphosphate galactose (UDP-galactose) is a valuable building block in the enzymatic synthesis of galactose-containing glycoconjugates. UDP-glucose 4-epimerase (UGE) is an enzyme which catalyzes the reversible conversion of abundantly available UDP-glucose to UDP-galactose. Herein, we describ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032241/ https://www.ncbi.nlm.nih.gov/pubmed/29844279 http://dx.doi.org/10.3390/ijms19061600 |
Sumario: | Uridine diphosphate galactose (UDP-galactose) is a valuable building block in the enzymatic synthesis of galactose-containing glycoconjugates. UDP-glucose 4-epimerase (UGE) is an enzyme which catalyzes the reversible conversion of abundantly available UDP-glucose to UDP-galactose. Herein, we described the cloning, expression, purification, and biochemical characterization of an unstudied UGE from the oyster Magallana gigas (MgUGE). Activity tests of recombinantly expressed MgUGE, using HPLC (high-performance liquid chromatography), mass spectrometry, and photometric assays, showed an optimal temperature of 16 °C, and reasonable thermal stability up to 37 °C. No metal ions were required for enzymatic activity. The simple nickel-affinity-purification procedure makes MgUGE a valuable biocatalyst for the synthesis of UDP-galactose from UDP-glucose. The biosynthetic potential of MgUGE was further exemplified in a coupled enzymatic reaction with an oyster-derived β-1,4-galactosyltransferase (MgGalT7), allowing the galactosylation of the model substrate para-nitrophenol xylose (pNP-xylose) using UDP-glucose as the starting material. |
---|