Cargando…
SeqSVM: A Sequence-Based Support Vector Machine Method for Identifying Antioxidant Proteins
Antioxidant proteins can be beneficial in disease prevention. More attention has been paid to the functionality of antioxidant proteins. Therefore, identifying antioxidant proteins is important for the study. In our work, we propose a computational method, called SeqSVM, for predicting antioxidant p...
Autores principales: | Xu, Lei, Liang, Guangmin, Shi, Shuhua, Liao, Changrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032279/ https://www.ncbi.nlm.nih.gov/pubmed/29914044 http://dx.doi.org/10.3390/ijms19061773 |
Ejemplares similares
-
AOPs-SVM: A Sequence-Based Classifier of Antioxidant Proteins Using a Support Vector Machine
por: Meng, Chaolu, et al.
Publicado: (2019) -
CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks
por: Gillani, Zeeshan, et al.
Publicado: (2014) -
A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides
por: Xu, Lei, et al.
Publicado: (2018) -
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
por: Malvoni, M., et al.
Publicado: (2016) -
PVP-SVM: Sequence-Based Prediction of Phage Virion Proteins Using a Support Vector Machine
por: Manavalan, Balachandran, et al.
Publicado: (2018)