Cargando…

Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells

Alternative therapies are needed to reduce the use of antibiotics and incidence of drug-resistant Salmonellosis. Previous studies have revealed important roles of statins in regulating innate immunity. Therefore, we investigated the effects of statins on innate immunity in Salmonella-infected intest...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Fu-Chen, Huang, Shun-Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032317/
https://www.ncbi.nlm.nih.gov/pubmed/29865262
http://dx.doi.org/10.3390/ijms19061650
_version_ 1783337483442847744
author Huang, Fu-Chen
Huang, Shun-Chen
author_facet Huang, Fu-Chen
Huang, Shun-Chen
author_sort Huang, Fu-Chen
collection PubMed
description Alternative therapies are needed to reduce the use of antibiotics and incidence of drug-resistant Salmonellosis. Previous studies have revealed important roles of statins in regulating innate immunity. Therefore, we investigated the effects of statins on innate immunity in Salmonella-infected intestinal epithelial cells (IECs), which are involved in mucosal innate immunity. SW480 cells and Akt siRNA- or vitamin D receptor (VDR) siRNA-transfected SW480 cells were infected by wild-type S. Typhimurium strain SL1344 in the presence or absence of statins. The mRNA or protein expression was analyzed by real-time quantitative PCR or western blot analysis, respectively. Simvastatin or fluvastatin caused IL-8 (interleukin-8) suppression, but increased hBD-2 mRNA expression in Salmonella-infected SW480 cells. Both statins enhanced phosphorylated Akt and VDR expressions. Akt or VDR knockdown by siRNA counteracted the suppressive effect of simvastatin on IL-8 expression, whereas VDR knockdown diminished the enhanced hBD-2 expression in Salmonella-infected SW480 cells. Therefore, we observed differential regulation of statins on inflammatory IL-8 and anti-microbial hBD-2 expressions in Salmonella-infected IECs via PI3K/Akt signaling and VDR protein expression, respectively. The enhanced activity of antimicrobial peptides by statins in Salmonella-infected IECs could protect the host against infection, and modulation of pro-inflammatory responses could prevent the detrimental effects of overwhelming inflammation in the host.
format Online
Article
Text
id pubmed-6032317
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-60323172018-07-13 Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells Huang, Fu-Chen Huang, Shun-Chen Int J Mol Sci Article Alternative therapies are needed to reduce the use of antibiotics and incidence of drug-resistant Salmonellosis. Previous studies have revealed important roles of statins in regulating innate immunity. Therefore, we investigated the effects of statins on innate immunity in Salmonella-infected intestinal epithelial cells (IECs), which are involved in mucosal innate immunity. SW480 cells and Akt siRNA- or vitamin D receptor (VDR) siRNA-transfected SW480 cells were infected by wild-type S. Typhimurium strain SL1344 in the presence or absence of statins. The mRNA or protein expression was analyzed by real-time quantitative PCR or western blot analysis, respectively. Simvastatin or fluvastatin caused IL-8 (interleukin-8) suppression, but increased hBD-2 mRNA expression in Salmonella-infected SW480 cells. Both statins enhanced phosphorylated Akt and VDR expressions. Akt or VDR knockdown by siRNA counteracted the suppressive effect of simvastatin on IL-8 expression, whereas VDR knockdown diminished the enhanced hBD-2 expression in Salmonella-infected SW480 cells. Therefore, we observed differential regulation of statins on inflammatory IL-8 and anti-microbial hBD-2 expressions in Salmonella-infected IECs via PI3K/Akt signaling and VDR protein expression, respectively. The enhanced activity of antimicrobial peptides by statins in Salmonella-infected IECs could protect the host against infection, and modulation of pro-inflammatory responses could prevent the detrimental effects of overwhelming inflammation in the host. MDPI 2018-06-02 /pmc/articles/PMC6032317/ /pubmed/29865262 http://dx.doi.org/10.3390/ijms19061650 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Huang, Fu-Chen
Huang, Shun-Chen
Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells
title Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells
title_full Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells
title_fullStr Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells
title_full_unstemmed Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells
title_short Differential Effects of Statins on Inflammatory Interleukin-8 and Antimicrobial Peptide Human Β-Defensin 2 Responses in Salmonella-Infected Intestinal Epithelial Cells
title_sort differential effects of statins on inflammatory interleukin-8 and antimicrobial peptide human β-defensin 2 responses in salmonella-infected intestinal epithelial cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032317/
https://www.ncbi.nlm.nih.gov/pubmed/29865262
http://dx.doi.org/10.3390/ijms19061650
work_keys_str_mv AT huangfuchen differentialeffectsofstatinsoninflammatoryinterleukin8andantimicrobialpeptidehumanbdefensin2responsesinsalmonellainfectedintestinalepithelialcells
AT huangshunchen differentialeffectsofstatinsoninflammatoryinterleukin8andantimicrobialpeptidehumanbdefensin2responsesinsalmonellainfectedintestinalepithelialcells