Cargando…
Comprehensive genetic characteristics of dystrophinopathies in China
BACKGROUND: Dystrophinopathies are a set of severe and incurable X-linked neuromuscular disorders caused by mutations in the dystrophin gene (DMD). These mutations form a complex spectrum. A national registration network is essential not only to provide more information about the prevalence and natu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032532/ https://www.ncbi.nlm.nih.gov/pubmed/29973226 http://dx.doi.org/10.1186/s13023-018-0853-z |
_version_ | 1783337518561755136 |
---|---|
author | Ma, Peipei Zhang, Shu Zhang, Hao Fang, Siying Dong, Yuru Zhang, Yan Hao, Weiwei Wu, Shiwen Zhao, Yuying |
author_facet | Ma, Peipei Zhang, Shu Zhang, Hao Fang, Siying Dong, Yuru Zhang, Yan Hao, Weiwei Wu, Shiwen Zhao, Yuying |
author_sort | Ma, Peipei |
collection | PubMed |
description | BACKGROUND: Dystrophinopathies are a set of severe and incurable X-linked neuromuscular disorders caused by mutations in the dystrophin gene (DMD). These mutations form a complex spectrum. A national registration network is essential not only to provide more information about the prevalence and natural history of the disease, but also to collect genetic data for analyzing the mutational spectrum. This information is extremely beneficial for basic scientific research, genetic diagnosis, trial planning, clinical care, and gene therapy. METHODS: We collected data from 1400 patients (1042 patients with confirmed unrelated Duchenne muscular dystrophy [DMD] or Becker muscular dystrophy [BMD]) registered in the Chinese Genetic Disease Registry from March 2012 to August 2017 and analyzed the genetic mutational characteristics of these patients. RESULTS: Large deletions were the most frequent type of mutation (72.2%), followed by nonsense mutations (11.9%), exon duplications (8.8%), small deletions (3.0%), splice-site mutations (2.1%), small insertions (1.3%), missense mutations (0.6%), and a combination mutation of a deletion and a duplication (0.1%). Exon 45–50 deletion was the most frequent deletion type, while exon 2 duplication was the most common duplication type. Two deletion hotspots were calculated—one located toward the central part (exon 45–52) of the gene and the other toward the 5’end (exon 8–26). We found no significant difference between hereditary and de novo mutations on deletion hotspots. Nonsense mutations accounted for 62.9% of all small mutations (197 patients). CONCLUSION: We built a comprehensive national dystrophinopathy mutation database in China, which is essential for basic and clinical research in this field. The mutational spectrum and characteristics of this DMD/BMD group were largely consistent with those in previous international DMD/BMD studies, with some differences. Based on our results, about 12% of DMD/BMD patients with nonsense mutations may benefit from stop codon read-through therapy. Additionally, the top three targets for exon-skipping therapy are exon 51 (141, 13.5%), exon 53 (115, 11.0%), and exon 45 (84, 8.0%). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13023-018-0853-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6032532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60325322018-07-11 Comprehensive genetic characteristics of dystrophinopathies in China Ma, Peipei Zhang, Shu Zhang, Hao Fang, Siying Dong, Yuru Zhang, Yan Hao, Weiwei Wu, Shiwen Zhao, Yuying Orphanet J Rare Dis Research BACKGROUND: Dystrophinopathies are a set of severe and incurable X-linked neuromuscular disorders caused by mutations in the dystrophin gene (DMD). These mutations form a complex spectrum. A national registration network is essential not only to provide more information about the prevalence and natural history of the disease, but also to collect genetic data for analyzing the mutational spectrum. This information is extremely beneficial for basic scientific research, genetic diagnosis, trial planning, clinical care, and gene therapy. METHODS: We collected data from 1400 patients (1042 patients with confirmed unrelated Duchenne muscular dystrophy [DMD] or Becker muscular dystrophy [BMD]) registered in the Chinese Genetic Disease Registry from March 2012 to August 2017 and analyzed the genetic mutational characteristics of these patients. RESULTS: Large deletions were the most frequent type of mutation (72.2%), followed by nonsense mutations (11.9%), exon duplications (8.8%), small deletions (3.0%), splice-site mutations (2.1%), small insertions (1.3%), missense mutations (0.6%), and a combination mutation of a deletion and a duplication (0.1%). Exon 45–50 deletion was the most frequent deletion type, while exon 2 duplication was the most common duplication type. Two deletion hotspots were calculated—one located toward the central part (exon 45–52) of the gene and the other toward the 5’end (exon 8–26). We found no significant difference between hereditary and de novo mutations on deletion hotspots. Nonsense mutations accounted for 62.9% of all small mutations (197 patients). CONCLUSION: We built a comprehensive national dystrophinopathy mutation database in China, which is essential for basic and clinical research in this field. The mutational spectrum and characteristics of this DMD/BMD group were largely consistent with those in previous international DMD/BMD studies, with some differences. Based on our results, about 12% of DMD/BMD patients with nonsense mutations may benefit from stop codon read-through therapy. Additionally, the top three targets for exon-skipping therapy are exon 51 (141, 13.5%), exon 53 (115, 11.0%), and exon 45 (84, 8.0%). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13023-018-0853-z) contains supplementary material, which is available to authorized users. BioMed Central 2018-07-04 /pmc/articles/PMC6032532/ /pubmed/29973226 http://dx.doi.org/10.1186/s13023-018-0853-z Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Ma, Peipei Zhang, Shu Zhang, Hao Fang, Siying Dong, Yuru Zhang, Yan Hao, Weiwei Wu, Shiwen Zhao, Yuying Comprehensive genetic characteristics of dystrophinopathies in China |
title | Comprehensive genetic characteristics of dystrophinopathies in China |
title_full | Comprehensive genetic characteristics of dystrophinopathies in China |
title_fullStr | Comprehensive genetic characteristics of dystrophinopathies in China |
title_full_unstemmed | Comprehensive genetic characteristics of dystrophinopathies in China |
title_short | Comprehensive genetic characteristics of dystrophinopathies in China |
title_sort | comprehensive genetic characteristics of dystrophinopathies in china |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032532/ https://www.ncbi.nlm.nih.gov/pubmed/29973226 http://dx.doi.org/10.1186/s13023-018-0853-z |
work_keys_str_mv | AT mapeipei comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT zhangshu comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT zhanghao comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT fangsiying comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT dongyuru comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT zhangyan comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT haoweiwei comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT wushiwen comprehensivegeneticcharacteristicsofdystrophinopathiesinchina AT zhaoyuying comprehensivegeneticcharacteristicsofdystrophinopathiesinchina |