Cargando…

Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process

BACKGROUND: Implantation failure is not only a major cause of early pregnancy loss, but it is also an obstacle to assisted reproductive technologies. The identification of potential circulating biomarkers for recurrent miscarriage (RM) and/or recurrent implantation failure would contribute to the de...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qian, Gu, Wen-Wen, Gu, Yan, Yan, Na-Na, Mao, Yan-Yan, Zhen, Xing-Xing, Wang, Jian-Mei, Yang, Jing, Shi, Hui-Juan, Zhang, Xuan, Wang, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032771/
https://www.ncbi.nlm.nih.gov/pubmed/29973278
http://dx.doi.org/10.1186/s12967-018-1556-x
Descripción
Sumario:BACKGROUND: Implantation failure is not only a major cause of early pregnancy loss, but it is also an obstacle to assisted reproductive technologies. The identification of potential circulating biomarkers for recurrent miscarriage (RM) and/or recurrent implantation failure would contribute to the development of novel diagnosis and prediction techniques. METHODS: MiR (miR-23a-3p, 27a-3p, 29a-3p, 100-5p, 127-3p and 486-5p) expression in the villi, decidual tissues and peripheral blood plasma and serum were validated by qPCR, and the localization of miRs in the villi and decidual tissues of RM and normal pregnancy (NP) women were detected by in situ hybridization. The invasiveness of HTR8/SVneo cells was determined using a Transwell assay. The predictive values of miRs for RM and the outcome of IVF-ET were respectively calculated by the receiver operating characteristic analysis. RESULTS: The signals of six miRs were observed in the villi and decidual tissues of RM and NP women. The villus miR-27a-3p, miR-29a-3p and miR-100-5p were significantly up-regulated, whereas miR-127-3p and miR-486-5p appeared to be down-regulated in RM women compared to NP women. The invasiveness of HTR8/SVneo cells transfected with miR-23a-3p mimics was evidently weakened, whereas that of cells transfected with miR-127-3p mimics was obviously enhanced. The peripheral blood plasma levels of miR-27a-3p, miR-29a-3p, miR-100-5p and miR-127-3p were significantly increased, whereas that of miR-486-5p was remarkably decreased in RM compared to NP women. By contrast, serum miR-23a-3p and miR-127-3p were significantly decreased, whereas that of miR-486-5p was remarkably increased. The combination of six plasma miRs levels discriminated RM with a sensitivity of 100% and a specificity of 83.3%, whereas that of six serum miRs levels showed a sensitivity of 78.3% and a specificity of 93.1%. In the IVF-ET cohort, the significantly decreased peripheral blood plasma levels of miR-23a-3p, miR-27a-3p, miR-100-5p and miR-127-3p, and the serum levels of miR-100-5p and miR-486-5p, in addition to the significantly increased serum level of miR-27a-3p, were found to be associated with the failure of ET. Moreover, the combination of plasma miR-23a-3p, miR-27a-3p, miR-29a-3p, miR-100-5p, miR-127-3p and miR-486-5p levels discriminated the outcome of IVF-ET with a sensitivity of 68.1% and a specificity of 54.1%, whereas the combination of plasma miR-127-3p and miR-486-5p levels showed a sensitivity of 50.0% and a specificity of 75.3%. CONCLUSIONS: Circulating miR-23a-3p, miR-27a-3p, miR-29a-3p, miR-100-5p, miR-127-3p and miR-486-5 might be involved in RM pathogenesis and present potential diagnostic biomarkers for RM. Meanwhile, these miRs, in particular miR-127-3p and miR-486-5p, provide promising prediction indexes for the outcomes of IVF-ET. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-018-1556-x) contains supplementary material, which is available to authorized users.