Cargando…
Targeted maximum likelihood estimation for a binary treatment: A tutorial
When estimating the average effect of a binary treatment (or exposure) on an outcome, methods that incorporate propensity scores, the G‐formula, or targeted maximum likelihood estimation (TMLE) are preferred over naïve regression approaches, which are biased under misspecification of a parametric ou...
Autores principales: | Luque‐Fernandez, Miguel Angel, Schomaker, Michael, Rachet, Bernard, Schnitzer, Mireille E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032875/ https://www.ncbi.nlm.nih.gov/pubmed/29687470 http://dx.doi.org/10.1002/sim.7628 |
Ejemplares similares
-
A tutorial on individualized treatment effect prediction from randomized trials with a binary endpoint
por: Hoogland, Jeroen, et al.
Publicado: (2021) -
A toolkit for measurement error correction, with a focus on nutritional epidemiology
por: Keogh, Ruth H, et al.
Publicado: (2014) -
Matching with time‐dependent treatments: A review and look forward
por: Thomas, Laine E., et al.
Publicado: (2020) -
A guide to genome‐wide association analysis and post‐analytic interrogation
por: Reed, Eric, et al.
Publicado: (2015) -
The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments
por: Austin, Peter C
Publicado: (2014)