Cargando…
Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system
1. Transmission of parasites between host species affects host population dynamics, interspecific competition, and ecosystem structure and function. In areas where wild and domestic herbivores share grazing land, management of parasites in livestock may affect or be affected by sympatric wildlife du...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032883/ https://www.ncbi.nlm.nih.gov/pubmed/30008482 http://dx.doi.org/10.1111/1365-2664.13083 |
_version_ | 1783337592447565824 |
---|---|
author | Walker, Josephine G. Evans, Kate E. Rose Vineer, Hannah van Wyk, Jan A. Morgan, Eric R. |
author_facet | Walker, Josephine G. Evans, Kate E. Rose Vineer, Hannah van Wyk, Jan A. Morgan, Eric R. |
author_sort | Walker, Josephine G. |
collection | PubMed |
description | 1. Transmission of parasites between host species affects host population dynamics, interspecific competition, and ecosystem structure and function. In areas where wild and domestic herbivores share grazing land, management of parasites in livestock may affect or be affected by sympatric wildlife due to cross‐species transmission. 2. We develop a novel method for simulating transmission potential based on both biotic and abiotic factors in a semi‐arid system in Botswana. Optimal timing of antiparasitic treatment in livestock is then compared under a variety of alternative host scenarios, including seasonally migrating wild hosts. 3. In this region, rainfall is the primary driver of seasonality of transmission, but wildlife migration leads to spatial differences in the effectiveness of treatment in domestic animals. Additionally, competent migratory wildlife hosts move parasites across the landscape. 4. Simulated transmission potential matches observed patterns of clinical disease in livestock in the study area. Increased wildlife contact is correlated with a decrease in disease, suggesting that non‐competent wild hosts may attenuate transmission by removing infective parasite larvae from livestock pasture. 5. Optimising the timing of treatment according to within‐year rainfall patterns was considerably more effective than treating at a standard time of year. By targeting treatment in this way, efficient control can be achieved, mitigating parasite spillover from wildlife where it does occur. 6. Synthesis and applications. This model of parasite transmission potential enables evidence‐based management of parasite spillover between wild and domestic species in a spatio‐temporally dynamic system. It can be applied in other mixed‐use systems to mitigate parasite transmission under altered climate scenarios or changes in host ranges. |
format | Online Article Text |
id | pubmed-6032883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60328832018-07-12 Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system Walker, Josephine G. Evans, Kate E. Rose Vineer, Hannah van Wyk, Jan A. Morgan, Eric R. J Appl Ecol Parasites and Pathogens 1. Transmission of parasites between host species affects host population dynamics, interspecific competition, and ecosystem structure and function. In areas where wild and domestic herbivores share grazing land, management of parasites in livestock may affect or be affected by sympatric wildlife due to cross‐species transmission. 2. We develop a novel method for simulating transmission potential based on both biotic and abiotic factors in a semi‐arid system in Botswana. Optimal timing of antiparasitic treatment in livestock is then compared under a variety of alternative host scenarios, including seasonally migrating wild hosts. 3. In this region, rainfall is the primary driver of seasonality of transmission, but wildlife migration leads to spatial differences in the effectiveness of treatment in domestic animals. Additionally, competent migratory wildlife hosts move parasites across the landscape. 4. Simulated transmission potential matches observed patterns of clinical disease in livestock in the study area. Increased wildlife contact is correlated with a decrease in disease, suggesting that non‐competent wild hosts may attenuate transmission by removing infective parasite larvae from livestock pasture. 5. Optimising the timing of treatment according to within‐year rainfall patterns was considerably more effective than treating at a standard time of year. By targeting treatment in this way, efficient control can be achieved, mitigating parasite spillover from wildlife where it does occur. 6. Synthesis and applications. This model of parasite transmission potential enables evidence‐based management of parasite spillover between wild and domestic species in a spatio‐temporally dynamic system. It can be applied in other mixed‐use systems to mitigate parasite transmission under altered climate scenarios or changes in host ranges. John Wiley and Sons Inc. 2018-01-28 2018-07 /pmc/articles/PMC6032883/ /pubmed/30008482 http://dx.doi.org/10.1111/1365-2664.13083 Text en © 2017 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Parasites and Pathogens Walker, Josephine G. Evans, Kate E. Rose Vineer, Hannah van Wyk, Jan A. Morgan, Eric R. Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system |
title | Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system |
title_full | Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system |
title_fullStr | Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system |
title_full_unstemmed | Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system |
title_short | Prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system |
title_sort | prediction and attenuation of seasonal spillover of parasites between wild and domestic ungulates in an arid mixed‐use system |
topic | Parasites and Pathogens |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032883/ https://www.ncbi.nlm.nih.gov/pubmed/30008482 http://dx.doi.org/10.1111/1365-2664.13083 |
work_keys_str_mv | AT walkerjosephineg predictionandattenuationofseasonalspilloverofparasitesbetweenwildanddomesticungulatesinanaridmixedusesystem AT evanskatee predictionandattenuationofseasonalspilloverofparasitesbetweenwildanddomesticungulatesinanaridmixedusesystem AT rosevineerhannah predictionandattenuationofseasonalspilloverofparasitesbetweenwildanddomesticungulatesinanaridmixedusesystem AT vanwykjana predictionandattenuationofseasonalspilloverofparasitesbetweenwildanddomesticungulatesinanaridmixedusesystem AT morganericr predictionandattenuationofseasonalspilloverofparasitesbetweenwildanddomesticungulatesinanaridmixedusesystem |