Cargando…
Mathematical modelling of expanded bed adsorption – a perspective on in silico process design
Expanded bed adsorption (EBA) emerged in the early 1990s in an attempt to integrate the clarification, capture and initial product concentration/purification process. Several mathematical models have been put forward to describe its operation. However, none of the models developed specifically for E...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032964/ https://www.ncbi.nlm.nih.gov/pubmed/30008502 http://dx.doi.org/10.1002/jctb.5595 |
_version_ | 1783337608994095104 |
---|---|
author | Koppejan, Victor Ferreira, Guilherme Lin, Dong‐Qiang Ottens, Marcel |
author_facet | Koppejan, Victor Ferreira, Guilherme Lin, Dong‐Qiang Ottens, Marcel |
author_sort | Koppejan, Victor |
collection | PubMed |
description | Expanded bed adsorption (EBA) emerged in the early 1990s in an attempt to integrate the clarification, capture and initial product concentration/purification process. Several mathematical models have been put forward to describe its operation. However, none of the models developed specifically for EBA allows simultaneous prediction of bed hydrodynamics, mass transfer/adsorption and (unwanted) interactions and fouling. This currently limits the development and early optimization of EBA‐based separation processes. In multiphase reactor engineering, the use of multiphase computational fluid dynamics has been shown to improve fundamental understanding of fluidized beds. To advance EBA technology, a combination of particle, equipment and process scale models should be used. By employing a cascade of multiscale simulations, the various challenges EBA currently faces can be addressed. This allows for optimal design and selection of equipment, materials and process conditions, and reduces risks and development times of downstream processes involving EBA. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. |
format | Online Article Text |
id | pubmed-6032964 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley & Sons, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-60329642018-07-12 Mathematical modelling of expanded bed adsorption – a perspective on in silico process design Koppejan, Victor Ferreira, Guilherme Lin, Dong‐Qiang Ottens, Marcel J Chem Technol Biotechnol Perspective Expanded bed adsorption (EBA) emerged in the early 1990s in an attempt to integrate the clarification, capture and initial product concentration/purification process. Several mathematical models have been put forward to describe its operation. However, none of the models developed specifically for EBA allows simultaneous prediction of bed hydrodynamics, mass transfer/adsorption and (unwanted) interactions and fouling. This currently limits the development and early optimization of EBA‐based separation processes. In multiphase reactor engineering, the use of multiphase computational fluid dynamics has been shown to improve fundamental understanding of fluidized beds. To advance EBA technology, a combination of particle, equipment and process scale models should be used. By employing a cascade of multiscale simulations, the various challenges EBA currently faces can be addressed. This allows for optimal design and selection of equipment, materials and process conditions, and reduces risks and development times of downstream processes involving EBA. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. John Wiley & Sons, Ltd 2018-04-06 2018-07 /pmc/articles/PMC6032964/ /pubmed/30008502 http://dx.doi.org/10.1002/jctb.5595 Text en © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Perspective Koppejan, Victor Ferreira, Guilherme Lin, Dong‐Qiang Ottens, Marcel Mathematical modelling of expanded bed adsorption – a perspective on in silico process design |
title | Mathematical modelling of expanded bed adsorption – a perspective on in silico process design |
title_full | Mathematical modelling of expanded bed adsorption – a perspective on in silico process design |
title_fullStr | Mathematical modelling of expanded bed adsorption – a perspective on in silico process design |
title_full_unstemmed | Mathematical modelling of expanded bed adsorption – a perspective on in silico process design |
title_short | Mathematical modelling of expanded bed adsorption – a perspective on in silico process design |
title_sort | mathematical modelling of expanded bed adsorption – a perspective on in silico process design |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032964/ https://www.ncbi.nlm.nih.gov/pubmed/30008502 http://dx.doi.org/10.1002/jctb.5595 |
work_keys_str_mv | AT koppejanvictor mathematicalmodellingofexpandedbedadsorptionaperspectiveoninsilicoprocessdesign AT ferreiraguilherme mathematicalmodellingofexpandedbedadsorptionaperspectiveoninsilicoprocessdesign AT lindongqiang mathematicalmodellingofexpandedbedadsorptionaperspectiveoninsilicoprocessdesign AT ottensmarcel mathematicalmodellingofexpandedbedadsorptionaperspectiveoninsilicoprocessdesign |