Cargando…
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
In this study, a brain-computer interface (BCI) framework for hybrid functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) for locked-in syndrome (LIS) patients is investigated. Brain tasks, channel selection methods, and feature extraction and classification algorithms avai...
Autores principales: | Hong, Keum-Shik, Khan, M. Jawad, Hong, Melissa J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032997/ https://www.ncbi.nlm.nih.gov/pubmed/30002623 http://dx.doi.org/10.3389/fnhum.2018.00246 |
Ejemplares similares
-
Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study
por: Khan, M. Jawad, et al.
Publicado: (2018) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017) -
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM
por: Mughal, Nabeeha Ehsan, et al.
Publicado: (2022) -
fNIRS-based brain-computer interfaces: a review
por: Naseer, Noman, et al.
Publicado: (2015) -
Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface
por: Khan, M. Jawad, et al.
Publicado: (2014)