Cargando…
Asymmetric Reductive Carbocyclization Using Engineered Ene Reductases
Ene reductases from the Old Yellow Enzyme (OYE) family reduce the C=C double bond in α,β‐unsaturated compounds bearing an electron‐withdrawing group, for example, a carbonyl group. This asymmetric reduction has been exploited for biocatalysis. Going beyond its canonical function, we show that member...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033016/ https://www.ncbi.nlm.nih.gov/pubmed/29689601 http://dx.doi.org/10.1002/anie.201802962 |
Sumario: | Ene reductases from the Old Yellow Enzyme (OYE) family reduce the C=C double bond in α,β‐unsaturated compounds bearing an electron‐withdrawing group, for example, a carbonyl group. This asymmetric reduction has been exploited for biocatalysis. Going beyond its canonical function, we show that members of this enzyme family can also catalyze the formation of C−C bonds. α,β‐Unsaturated aldehydes and ketones containing an additional electrophilic group undergo reductive cyclization. Mechanistically, the two‐electron‐reduced enzyme cofactor FMN delivers a hydride to generate an enolate intermediate, which reacts with the internal electrophile. Single‐site replacement of a crucial Tyr residue with a non‐protic Phe or Trp favored the cyclization over the natural reduction reaction. The new transformation enabled the enantioselective synthesis of chiral cyclopropanes in up to >99 % ee. |
---|