Cargando…
Machine Learning for Organic Synthesis: Are Robots Replacing Chemists?
Machines learn chemistry: An artificial intelligence algorithm has learned to predict the outcomes of C−N coupling reactions from a few thousand nanomole‐scale experiments. This Highlight discusses this work in the context of other state‐of‐the‐art approaches for predicting the yields of organic rea...
Autores principales: | Maryasin, Boris, Marquetand, Philipp, Maulide, Nuno |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033144/ https://www.ncbi.nlm.nih.gov/pubmed/29701305 http://dx.doi.org/10.1002/anie.201803562 |
Ejemplares similares
-
On the Stability of Disubstituted Cyclobutenes – A Computational Study
por: Maryasin, Boris, et al.
Publicado: (2018) -
AI-driven robotic chemist for autonomous synthesis of organic molecules
por: Ha, Taesin, et al.
Publicado: (2023) -
A redox-neutral synthesis of ketones by coupling of alkenes and amides
por: Li, Jing, et al.
Publicado: (2019) -
Direct Synthesis of α‐Amino Acid Derivatives by Hydrative Amination of Alkynes
por: Feng, Minghao, et al.
Publicado: (2022) -
Biomimetic Cationic
Cyclopropanation Enables an Efficient
Chemoenzymatic Synthesis of
6,8-Cycloeudesmanes
por: Grant, Phillip S., et al.
Publicado: (2023)