Cargando…
Earthquake prediction model using support vector regressor and hybrid neural networks
Earthquake prediction has been a challenging research area, where a future occurrence of the devastating catastrophe is predicted. In this work, sixty seismic features are computed through employing seismological concepts, such as Gutenberg-Richter law, seismic rate changes, foreshock frequency, sei...
Autores principales: | Asim, Khawaja M., Idris, Adnan, Iqbal, Talat, Martínez-Álvarez, Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033417/ https://www.ncbi.nlm.nih.gov/pubmed/29975687 http://dx.doi.org/10.1371/journal.pone.0199004 |
Ejemplares similares
-
Myocardium Detection by Deep SSAE Feature and Within-Class Neighborhood Preserved Support Vector Classifier and Regressor
por: Niu, Yanmin, et al.
Publicado: (2019) -
Delegated Regressor, A Robust Approach for Automated Anomaly Detection in the Soil Radon Time Series Data
por: Rafique, Muhammad, et al.
Publicado: (2020) -
Orthogonalization of Regressors in fMRI Models
por: Mumford, Jeanette A., et al.
Publicado: (2015) -
Heterogeneity of tumorigenicity phenotype in murine tumors. I. Characterization of regressor and progressor clones isolated from a nonmutagenized ultraviolet regressor tumor
por: Schmitt, M, et al.
Publicado: (1981) -
Percentage of progressors in imaging: can we ignore regressors?
por: Sepriano, Alexandre, et al.
Publicado: (2019)