Cargando…

Diversification of heart progenitor cells by EGF signaling and differential modulation of ETS protein activity

For coordinated circulation, vertebrate and invertebrate hearts require stereotyped arrangements of diverse cell populations. This study explores the process of cardiac cell diversification in the Drosophila heart, focusing on the two major cardioblast subpopulations: generic working myocardial cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwarz, Benjamin, Hollfelder, Dominik, Scharf, Katharina, Hartmann, Leonie, Reim, Ingolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033539/
https://www.ncbi.nlm.nih.gov/pubmed/29869981
http://dx.doi.org/10.7554/eLife.32847
Descripción
Sumario:For coordinated circulation, vertebrate and invertebrate hearts require stereotyped arrangements of diverse cell populations. This study explores the process of cardiac cell diversification in the Drosophila heart, focusing on the two major cardioblast subpopulations: generic working myocardial cells and inflow valve-forming ostial cardioblasts. By screening a large collection of randomly induced mutants, we identified several genes involved in cardiac patterning. Further analysis revealed an unexpected, specific requirement of EGF signaling for the specification of generic cardioblasts and a subset of pericardial cells. We demonstrate that the Tbx20 ortholog Midline acts as a direct target of the EGFR effector Pointed to repress ostial fates. Furthermore, we identified Edl/Mae, an antagonist of the ETS factor Pointed, as a novel cardiac regulator crucial for ostial cardioblast specification. Combining these findings, we propose a regulatory model in which the balance between activation of Pointed and its inhibition by Edl controls cardioblast subtype-specific gene expression.