Cargando…
Random Forests Based Group Importance Scores and Their Statistical Interpretation: Application for Alzheimer's Disease
Machine learning approaches have been increasingly used in the neuroimaging field for the design of computer-aided diagnosis systems. In this paper, we focus on the ability of these methods to provide interpretable information about the brain regions that are the most informative about the disease o...
Autores principales: | Wehenkel, Marie, Sutera, Antonio, Bastin, Christine, Geurts, Pierre, Phillips, Christophe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034092/ https://www.ncbi.nlm.nih.gov/pubmed/30008658 http://dx.doi.org/10.3389/fnins.2018.00411 |
Ejemplares similares
-
Exploiting SNP Correlations within Random Forest for Genome-Wide Association Studies
por: Botta, Vincent, et al.
Publicado: (2014) -
An interpretable Alzheimer’s disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification
por: Suh, Erica H., et al.
Publicado: (2023) -
Random subwindows and extremely randomized trees for image classification in cell biology
por: Marée, Raphaël, et al.
Publicado: (2007) -
Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer's Disease: A Systematic Review
por: Sarica, Alessia, et al.
Publicado: (2017) -
Perceptual Grouping of Closed Contours Is Disrupted by the Interpretation of the Scene Layout
por: Zhang, Junjun, et al.
Publicado: (2017)