Cargando…
Exploring the cellular network of metabolic flexibility in the adipose tissue
BACKGROUND: Metabolic flexibility is the ability of cells to change substrates for energy production based on the nutrient availability and energy requirement. It has been shown that metabolic flexibility is impaired in obesity and chronic diseases such as type 2 diabetes mellitus, cardiovascular di...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034334/ https://www.ncbi.nlm.nih.gov/pubmed/30002738 http://dx.doi.org/10.1186/s12263-018-0609-3 |
Sumario: | BACKGROUND: Metabolic flexibility is the ability of cells to change substrates for energy production based on the nutrient availability and energy requirement. It has been shown that metabolic flexibility is impaired in obesity and chronic diseases such as type 2 diabetes mellitus, cardiovascular diseases, and metabolic syndrome, although, whether it is a cause or an effect of these conditions remains to be elucidated. MAIN BODY: In this paper, we have reviewed the literature on metabolic flexibility and curated pathways and processes resulting in a network resource to investigate the interplay between these processes in the subcutaneous adipose tissue. The adipose tissue has been shown to be responsible, not only for energy storage but also for maintaining energy homeostasis through oxidation of glucose and fatty acids. We highlight the role of pyruvate dehydrogenase complex–pyruvate dehydrogenase kinase (PDC-PDK) interaction as a regulatory switch which is primarily responsible for changing substrates in energy metabolism from glucose to fatty acids and back. Baseline gene expression of the subcutaneous adipose tissue, along with a publicly available obesity data set, are visualised on the cellular network of metabolic flexibility to highlight the genes that are expressed and which are differentially affected in obesity. CONCLUSION: We have constructed an abstracted network covering glucose and fatty acid oxidation, as well as the PDC-PDK regulatory switch. In addition, we have shown how the network can be used for data visualisation and as a resource for follow-up studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12263-018-0609-3) contains supplementary material, which is available to authorized users. |
---|