Cargando…
Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach
Climate change projections show that temperature and precipitation increases can alter the exchange of greenhouse gases between the atmosphere and high latitude landscapes, including their freshwaters. Dissolved organic carbon (DOC) plays an important role in greenhouse gas emissions, but the impact...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034823/ https://www.ncbi.nlm.nih.gov/pubmed/29979688 http://dx.doi.org/10.1371/journal.pone.0199608 |
_version_ | 1783337942170730496 |
---|---|
author | Mzobe, Pearl Berggren, Martin Pilesjö, Petter Lundin, Erik Olefeldt, David Roulet, Nigel T. Persson, Andreas |
author_facet | Mzobe, Pearl Berggren, Martin Pilesjö, Petter Lundin, Erik Olefeldt, David Roulet, Nigel T. Persson, Andreas |
author_sort | Mzobe, Pearl |
collection | PubMed |
description | Climate change projections show that temperature and precipitation increases can alter the exchange of greenhouse gases between the atmosphere and high latitude landscapes, including their freshwaters. Dissolved organic carbon (DOC) plays an important role in greenhouse gas emissions, but the impact of catchment productivity on DOC release to subarctic waters remains poorly known, especially at regional scales. We test the hypothesis that increased terrestrial productivity, as indicated by the normalized difference vegetation index (NDVI), generates higher stream DOC concentrations in the Stordalen catchment in subarctic Sweden. Furthermore, we aimed to determine the degree to which other generic catchment properties (elevation, slope) explain DOC concentration, and whether or not land cover variables representing the local vegetation type (e.g., mire, forest) need to be included to obtain adequate predictive models for DOC delivered into rivers. We show that the land cover type, especially the proportion of mire, played a dominant role in the catchment’s release of DOC, while NDVI, slope, and elevation were supporting predictor variables. The NDVI as a single predictor showed weak and inconsistent relationships to DOC concentrations in recipient waters, yet NDVI was a significant positive regulator of DOC in multiple regression models that included land cover variables. Our study illustrates that vegetation type exerts primary control in DOC regulation in Stordalen, while productivity (NDVI) is of secondary importance. Thus, predictive multiple linear regression models for DOC can be utilized combining these different types of explanatory variables. |
format | Online Article Text |
id | pubmed-6034823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60348232018-07-19 Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach Mzobe, Pearl Berggren, Martin Pilesjö, Petter Lundin, Erik Olefeldt, David Roulet, Nigel T. Persson, Andreas PLoS One Research Article Climate change projections show that temperature and precipitation increases can alter the exchange of greenhouse gases between the atmosphere and high latitude landscapes, including their freshwaters. Dissolved organic carbon (DOC) plays an important role in greenhouse gas emissions, but the impact of catchment productivity on DOC release to subarctic waters remains poorly known, especially at regional scales. We test the hypothesis that increased terrestrial productivity, as indicated by the normalized difference vegetation index (NDVI), generates higher stream DOC concentrations in the Stordalen catchment in subarctic Sweden. Furthermore, we aimed to determine the degree to which other generic catchment properties (elevation, slope) explain DOC concentration, and whether or not land cover variables representing the local vegetation type (e.g., mire, forest) need to be included to obtain adequate predictive models for DOC delivered into rivers. We show that the land cover type, especially the proportion of mire, played a dominant role in the catchment’s release of DOC, while NDVI, slope, and elevation were supporting predictor variables. The NDVI as a single predictor showed weak and inconsistent relationships to DOC concentrations in recipient waters, yet NDVI was a significant positive regulator of DOC in multiple regression models that included land cover variables. Our study illustrates that vegetation type exerts primary control in DOC regulation in Stordalen, while productivity (NDVI) is of secondary importance. Thus, predictive multiple linear regression models for DOC can be utilized combining these different types of explanatory variables. Public Library of Science 2018-07-06 /pmc/articles/PMC6034823/ /pubmed/29979688 http://dx.doi.org/10.1371/journal.pone.0199608 Text en © 2018 Mzobe et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mzobe, Pearl Berggren, Martin Pilesjö, Petter Lundin, Erik Olefeldt, David Roulet, Nigel T. Persson, Andreas Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach |
title | Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach |
title_full | Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach |
title_fullStr | Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach |
title_full_unstemmed | Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach |
title_short | Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach |
title_sort | dissolved organic carbon in streams within a subarctic catchment analysed using a gis/remote sensing approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034823/ https://www.ncbi.nlm.nih.gov/pubmed/29979688 http://dx.doi.org/10.1371/journal.pone.0199608 |
work_keys_str_mv | AT mzobepearl dissolvedorganiccarboninstreamswithinasubarcticcatchmentanalysedusingagisremotesensingapproach AT berggrenmartin dissolvedorganiccarboninstreamswithinasubarcticcatchmentanalysedusingagisremotesensingapproach AT pilesjopetter dissolvedorganiccarboninstreamswithinasubarcticcatchmentanalysedusingagisremotesensingapproach AT lundinerik dissolvedorganiccarboninstreamswithinasubarcticcatchmentanalysedusingagisremotesensingapproach AT olefeldtdavid dissolvedorganiccarboninstreamswithinasubarcticcatchmentanalysedusingagisremotesensingapproach AT rouletnigelt dissolvedorganiccarboninstreamswithinasubarcticcatchmentanalysedusingagisremotesensingapproach AT perssonandreas dissolvedorganiccarboninstreamswithinasubarcticcatchmentanalysedusingagisremotesensingapproach |