Cargando…
Identification of multiple genes encoding SnRK1 subunits in potato tuber
BACKGROUND: Many studies have proven the importance of SnRK1 in the regulation of carbohydrate metabolism and plant development. Compared to Arabidopsis, much less is known about SnRK1 complexes in crop plants, and therefore, more work needs to be done to identify SnRK1 genes and to investigate thei...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034879/ https://www.ncbi.nlm.nih.gov/pubmed/29979765 http://dx.doi.org/10.1371/journal.pone.0200321 |
_version_ | 1783337955095478272 |
---|---|
author | Zhang, Yongzhong Huang, Binquan |
author_facet | Zhang, Yongzhong Huang, Binquan |
author_sort | Zhang, Yongzhong |
collection | PubMed |
description | BACKGROUND: Many studies have proven the importance of SnRK1 in the regulation of carbohydrate metabolism and plant development. Compared to Arabidopsis, much less is known about SnRK1 complexes in crop plants, and therefore, more work needs to be done to identify SnRK1 genes and to investigate their function in crop plants. METHODS: In this study we identified five SnRK1-related genes in potato by analyzing the potato genome through BLAST, which encode one α-subunit isoform (stKIN), two β-subunit isoforms (stKINβ1 and stKINβ2) and two γ-subunit isoforms (stKINγ and stKINβγ). To investigate the functions of SnRK1 in the tuber development of potato, we further made overexpression and RNAi transgenic plants of these five genes. Based on these overexpression transgenic plants, the Fast protein liquid chromatography (FPLC) were employed to purify SnRK1 complexes, which were tracked by western-blot. RESULTS: Experiments in vivo and in vitro showed that these five proteins in potato are functional SNF1/AMPK/SnRK1-related proteins. The SnRK1 activity decreased by 60% in the RNAi transgenic lines of stKIN; the starch content increased by 25% in the overexpression transgenic lines of stKIN, compared to that in the wild-type lines, whereas there is no significant difference in SnRK1 activity and starch content in the RNAi transgenic or overexpression lines of stKINβ1, stKINβ2, stKINγ and stKINβγ. In addition, we found that a few different SnRK1 complexes are present in potato by partially purifying SnRK1 complexes from these overexpression transgenic plants. CONCLUSIONS: Five functional SnRK1-related genes were identified in potato, including three novel genes, which encode one α-subunit isoform (stKIN), two β-subunit isoforms (stKINβ1 and stKINβ2) and two γ-subunit isoforms (stKINγ and stKINβγ). We found that a few SnRK1 related genes are present in potato tuber, which form several different SnRK1 isoenzymes. We found that stKIN is the primary α subunit of SnRK1 in potato tuber and plays important roles in the development of potato tubers. |
format | Online Article Text |
id | pubmed-6034879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60348792018-07-19 Identification of multiple genes encoding SnRK1 subunits in potato tuber Zhang, Yongzhong Huang, Binquan PLoS One Research Article BACKGROUND: Many studies have proven the importance of SnRK1 in the regulation of carbohydrate metabolism and plant development. Compared to Arabidopsis, much less is known about SnRK1 complexes in crop plants, and therefore, more work needs to be done to identify SnRK1 genes and to investigate their function in crop plants. METHODS: In this study we identified five SnRK1-related genes in potato by analyzing the potato genome through BLAST, which encode one α-subunit isoform (stKIN), two β-subunit isoforms (stKINβ1 and stKINβ2) and two γ-subunit isoforms (stKINγ and stKINβγ). To investigate the functions of SnRK1 in the tuber development of potato, we further made overexpression and RNAi transgenic plants of these five genes. Based on these overexpression transgenic plants, the Fast protein liquid chromatography (FPLC) were employed to purify SnRK1 complexes, which were tracked by western-blot. RESULTS: Experiments in vivo and in vitro showed that these five proteins in potato are functional SNF1/AMPK/SnRK1-related proteins. The SnRK1 activity decreased by 60% in the RNAi transgenic lines of stKIN; the starch content increased by 25% in the overexpression transgenic lines of stKIN, compared to that in the wild-type lines, whereas there is no significant difference in SnRK1 activity and starch content in the RNAi transgenic or overexpression lines of stKINβ1, stKINβ2, stKINγ and stKINβγ. In addition, we found that a few different SnRK1 complexes are present in potato by partially purifying SnRK1 complexes from these overexpression transgenic plants. CONCLUSIONS: Five functional SnRK1-related genes were identified in potato, including three novel genes, which encode one α-subunit isoform (stKIN), two β-subunit isoforms (stKINβ1 and stKINβ2) and two γ-subunit isoforms (stKINγ and stKINβγ). We found that a few SnRK1 related genes are present in potato tuber, which form several different SnRK1 isoenzymes. We found that stKIN is the primary α subunit of SnRK1 in potato tuber and plays important roles in the development of potato tubers. Public Library of Science 2018-07-06 /pmc/articles/PMC6034879/ /pubmed/29979765 http://dx.doi.org/10.1371/journal.pone.0200321 Text en © 2018 Zhang, Huang http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zhang, Yongzhong Huang, Binquan Identification of multiple genes encoding SnRK1 subunits in potato tuber |
title | Identification of multiple genes encoding SnRK1 subunits in potato tuber |
title_full | Identification of multiple genes encoding SnRK1 subunits in potato tuber |
title_fullStr | Identification of multiple genes encoding SnRK1 subunits in potato tuber |
title_full_unstemmed | Identification of multiple genes encoding SnRK1 subunits in potato tuber |
title_short | Identification of multiple genes encoding SnRK1 subunits in potato tuber |
title_sort | identification of multiple genes encoding snrk1 subunits in potato tuber |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034879/ https://www.ncbi.nlm.nih.gov/pubmed/29979765 http://dx.doi.org/10.1371/journal.pone.0200321 |
work_keys_str_mv | AT zhangyongzhong identificationofmultiplegenesencodingsnrk1subunitsinpotatotuber AT huangbinquan identificationofmultiplegenesencodingsnrk1subunitsinpotatotuber |