Cargando…

Bone healing response in cyclically loaded implants: Comparing zero, one, and two loading sessions per day

When bone implants are loaded, they are inevitably subjected to displacement relative to bone. Such micro-motion generates stress/strain states at the interface that can cause beneficial or detrimental sequels. The objective of this study is to better understand the mechanobiology of bone healing at...

Descripción completa

Detalles Bibliográficos
Autores principales: Bueno, Renan de Barros e Lima, Dias, Ana Paula, Ponce, Katia J., Wazen, Rima, Brunski, John B., Nanci, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035061/
https://www.ncbi.nlm.nih.gov/pubmed/29894930
http://dx.doi.org/10.1016/j.jmbbm.2018.05.044
Descripción
Sumario:When bone implants are loaded, they are inevitably subjected to displacement relative to bone. Such micro-motion generates stress/strain states at the interface that can cause beneficial or detrimental sequels. The objective of this study is to better understand the mechanobiology of bone healing at the tissue-implant interface during repeated loading. Machined screw shaped Ti implants were placed in rat tibiae in a hole slightly bigger than the implant diameter. Implants were held stable by a specially-designed bone plate that permits controlled loading. Three loading regimens were applied, (a) zero loading, (b) one daily loading session of 60 cycles with an axial force of 1.5 N/cycle for 7 days, and (c) two such daily sessions with the same axial force also for 7 days. Finite element analysis was used to characterize the mechanobiological conditions produced by the loading sessions. After 7 days, the implants with surrounding interfacial tissue were harvested and processed for histological, histomorphometric and DNA microarray analyses. Histomorphometric analyses revealed that the group subjected to repeated loading sessions exhibited a significant decrease in bone-implant contact and increase in bone-implant distance, as compared to unloaded implants and those subjected to only one loading session. Gene expression profiles differed during osseointegration between all groups mainly with respect to inflammatory and unidentified gene categories. The results indicate that increasing the daily cyclic loading of implants induces deleterious changes in the bone healing response, most likely due to the accumulation of tissue damage and associated inflammatory reaction at the bone-implant interface.