Cargando…

Listening to earthworms burrowing and roots growing - acoustic signatures of soil biological activity

We report observations of acoustic emissions (AE) from growing plant roots and burrowing earthworms in soil, as a noninvasive method for monitoring biophysical processes that modify soil structure. AE emanating from earthworm and plants root activity were linked with time-lapse imaging in glass cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Lacoste, Marine, Ruiz, Siul, Or, Dani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035217/
https://www.ncbi.nlm.nih.gov/pubmed/29980792
http://dx.doi.org/10.1038/s41598-018-28582-9
Descripción
Sumario:We report observations of acoustic emissions (AE) from growing plant roots and burrowing earthworms in soil, as a noninvasive method for monitoring biophysical processes that modify soil structure. AE emanating from earthworm and plants root activity were linked with time-lapse imaging in glass cells. Acoustic waveguides where installed in soil columns to monitor root growth in real time (mimicking field application). The cumulative AE events were in correlation with earthworm burrow lengths and with root growth. The number of AE events recorded from the soil columns with growing maize roots were several orders of magnitude larger than AE emanating from bare soil under similar conditions. The results suggest that AE monitoring may offer a window into largely unobservable dynamics of soil biomechanical processes such as root growth or patterns of earthworm activity - both important soil structure forming processes.