Cargando…
Phenotype-Based and Self-Learning Inter-Individual Sleep Apnea Screening With a Level IV-Like Monitoring System
Purpose: We propose a phenotype-based artificial intelligence system that can self-learn and is accurate for screening purposes and test it on a Level IV-like monitoring system. Methods: Based on the physiological knowledge, we hypothesize that the phenotype information will allow us to find subject...
Autores principales: | Wu, Hau-Tieng, Wu, Jhao-Cheng, Huang, Po-Chiun, Lin, Ting-Yu, Wang, Tsai-Yu, Huang, Yuan-Hao, Lo, Yu-Lun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036126/ https://www.ncbi.nlm.nih.gov/pubmed/30013479 http://dx.doi.org/10.3389/fphys.2018.00723 |
Ejemplares similares
-
Portable Sleep Apnea Syndrome Screening and Event Detection Using Long Short-Term Memory Recurrent Neural Network
por: Chang, Hung-Chi, et al.
Publicado: (2020) -
A Persistent Homology Approach to Heart Rate Variability Analysis With an Application to Sleep-Wake Classification
por: Chung, Yu-Min, et al.
Publicado: (2021) -
Prediction of the severity of obstructive sleep apnea by anthropometric features via support vector machine
por: Liu, Wen-Te, et al.
Publicado: (2017) -
How Nonlinear-Type Time-Frequency Analysis Can Help in Sensing Instantaneous Heart Rate and Instantaneous Respiratory Rate from Photoplethysmography in a Reliable Way
por: Cicone, Antonio, et al.
Publicado: (2017) -
Efficient Fetal-Maternal ECG Signal Separation from Two Channel Maternal Abdominal ECG via Diffusion-Based Channel Selection
por: Li, Ruilin, et al.
Publicado: (2017)