Cargando…
Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis
Silicosis is an incurable lung disease affecting millions of workers in hazardous occupations. It is caused by chronic exposure to the dust that contains free crystalline silica. Silica-induced lung damage occurs by several main mechanisms including cell death by apoptosis, fibrosis and production o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036162/ https://www.ncbi.nlm.nih.gov/pubmed/30013439 http://dx.doi.org/10.7150/ijms.24715 |
_version_ | 1783338117808259072 |
---|---|
author | Chan, Judy Yuet Wa Tsui, Joseph Chi Ching Law, Patrick Tik Wan So, Winnie Kwok Wei Leung, Doris Yin Ping Sham, Michael Mau Kwong Tsui, Stephen Kwok Wing Chan, Carmen Wing Han |
author_facet | Chan, Judy Yuet Wa Tsui, Joseph Chi Ching Law, Patrick Tik Wan So, Winnie Kwok Wei Leung, Doris Yin Ping Sham, Michael Mau Kwong Tsui, Stephen Kwok Wing Chan, Carmen Wing Han |
author_sort | Chan, Judy Yuet Wa |
collection | PubMed |
description | Silicosis is an incurable lung disease affecting millions of workers in hazardous occupations. It is caused by chronic exposure to the dust that contains free crystalline silica. Silica-induced lung damage occurs by several main mechanisms including cell death by apoptosis, fibrosis and production of cytokines. However, the signal pathways involved in these mechanisms are not fully characterized. In this study, the toll-like receptor 4 (TLR4)-related signal pathway was examined in silica-treated U937-differentiated macrophages. The expression level of TLR4 was measured by both quantitative PCR and Western blot. Confirmation of the involvement of MyD88/TIRAP and NFκB p65 cascade was performed by Western blot. The secretion of cytokines IL-1β, IL-6, IL-10 and TNFα was measured by enzyme-linked immunosorbent assay. Our results showed that TLR4 and related MyD88/TIRAP pathway was associated with silica-exposure in U937-differentiated macrophages. Protein expression of TLR4, MyD88 and TIRAP was upregulated when the U937-differentiated macrophages were exposed to silica. However, the upregulation was attenuated when TLR4 inhibitor, TAK-242 was present. At different incubation times of silica exposure, it was found that NFκB p65 cascade was activated at 10-60 minutes. Release of cytokines IL-1β, IL-6, IL-10 and TNFα was induced by silica exposure and the induction of IL-1β, IL-6 and TNFα was suppressed by the addition of TAK-242. In conclusion, our study demonstrated that TLR4 and related MyD88/TIRAP pathway was involved in silica-induced inflammation in U937-differentiated macrophages. Downstream NFκB p65 cascade was activated within 1 hour when the U937-differentiated macrophages were exposed to silica. The better understanding of early stage of silica-induced inflammatory process may help to develop earlier diagnosis of silicosis. |
format | Online Article Text |
id | pubmed-6036162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-60361622018-07-16 Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis Chan, Judy Yuet Wa Tsui, Joseph Chi Ching Law, Patrick Tik Wan So, Winnie Kwok Wei Leung, Doris Yin Ping Sham, Michael Mau Kwong Tsui, Stephen Kwok Wing Chan, Carmen Wing Han Int J Med Sci Short Research Communication Silicosis is an incurable lung disease affecting millions of workers in hazardous occupations. It is caused by chronic exposure to the dust that contains free crystalline silica. Silica-induced lung damage occurs by several main mechanisms including cell death by apoptosis, fibrosis and production of cytokines. However, the signal pathways involved in these mechanisms are not fully characterized. In this study, the toll-like receptor 4 (TLR4)-related signal pathway was examined in silica-treated U937-differentiated macrophages. The expression level of TLR4 was measured by both quantitative PCR and Western blot. Confirmation of the involvement of MyD88/TIRAP and NFκB p65 cascade was performed by Western blot. The secretion of cytokines IL-1β, IL-6, IL-10 and TNFα was measured by enzyme-linked immunosorbent assay. Our results showed that TLR4 and related MyD88/TIRAP pathway was associated with silica-exposure in U937-differentiated macrophages. Protein expression of TLR4, MyD88 and TIRAP was upregulated when the U937-differentiated macrophages were exposed to silica. However, the upregulation was attenuated when TLR4 inhibitor, TAK-242 was present. At different incubation times of silica exposure, it was found that NFκB p65 cascade was activated at 10-60 minutes. Release of cytokines IL-1β, IL-6, IL-10 and TNFα was induced by silica exposure and the induction of IL-1β, IL-6 and TNFα was suppressed by the addition of TAK-242. In conclusion, our study demonstrated that TLR4 and related MyD88/TIRAP pathway was involved in silica-induced inflammation in U937-differentiated macrophages. Downstream NFκB p65 cascade was activated within 1 hour when the U937-differentiated macrophages were exposed to silica. The better understanding of early stage of silica-induced inflammatory process may help to develop earlier diagnosis of silicosis. Ivyspring International Publisher 2018-06-14 /pmc/articles/PMC6036162/ /pubmed/30013439 http://dx.doi.org/10.7150/ijms.24715 Text en © Ivyspring International Publisher This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Short Research Communication Chan, Judy Yuet Wa Tsui, Joseph Chi Ching Law, Patrick Tik Wan So, Winnie Kwok Wei Leung, Doris Yin Ping Sham, Michael Mau Kwong Tsui, Stephen Kwok Wing Chan, Carmen Wing Han Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis |
title | Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis |
title_full | Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis |
title_fullStr | Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis |
title_full_unstemmed | Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis |
title_short | Regulation of TLR4 in silica-induced inflammation: An underlying mechanism of silicosis |
title_sort | regulation of tlr4 in silica-induced inflammation: an underlying mechanism of silicosis |
topic | Short Research Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036162/ https://www.ncbi.nlm.nih.gov/pubmed/30013439 http://dx.doi.org/10.7150/ijms.24715 |
work_keys_str_mv | AT chanjudyyuetwa regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis AT tsuijosephchiching regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis AT lawpatricktikwan regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis AT sowinniekwokwei regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis AT leungdorisyinping regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis AT shammichaelmaukwong regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis AT tsuistephenkwokwing regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis AT chancarmenwinghan regulationoftlr4insilicainducedinflammationanunderlyingmechanismofsilicosis |