Cargando…

Brain States That Encode Perceived Emotion Are Reproducible but Their Classification Accuracy Is Stimulus-Dependent

The brain state hypothesis of image-induced affect processing, which posits that a one-to-one mapping exists between each image stimulus and its induced functional magnetic resonance imaging (fMRI)-derived neural activation pattern (i.e., brain state), has recently received support from several mult...

Descripción completa

Detalles Bibliográficos
Autores principales: Bush, Keith A., Gardner, Jonathan, Privratsky, Anthony, Chung, Ming-Hua, James, G. Andrew, Kilts, Clinton D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036171/
https://www.ncbi.nlm.nih.gov/pubmed/30013469
http://dx.doi.org/10.3389/fnhum.2018.00262
Descripción
Sumario:The brain state hypothesis of image-induced affect processing, which posits that a one-to-one mapping exists between each image stimulus and its induced functional magnetic resonance imaging (fMRI)-derived neural activation pattern (i.e., brain state), has recently received support from several multivariate pattern analysis (MVPA) studies. Critically, however, classification accuracy differences across these studies, which largely share experimental designs and analyses, suggest that there exist one or more unaccounted sources of variance within MVPA studies of affect processing. To explore this possibility, we directly demonstrated strong inter-study correlations between image-induced affective brain states acquired 4 years apart on the same MRI scanner using near-identical methodology with studies differing only by the specific image stimuli and subjects. We subsequently developed a plausible explanation for inter-study differences in affective valence and arousal classification accuracies based on the spatial distribution of the perceived affective properties of the stimuli. Controlling for this distribution improved valence classification accuracy from 56% to 85% and arousal classification accuracy from 61% to 78%, which mirrored the full range of classification accuracy across studies within the existing literature. Finally, we validated the predictive fidelity of our image-related brain states according to an independent measurement, autonomic arousal, captured via skin conductance response (SCR). Brain states significantly but weakly (r = 0.08) predicted the SCRs that accompanied individual image stimulations. More importantly, the effect size of brain state predictions of SCR increased more than threefold (r = 0.25) when the stimulus set was restricted to those images having group-level significantly classifiable arousal properties.