Cargando…
Predicting Age From Brain EEG Signals—A Machine Learning Approach
Objective: The brain age gap estimate (BrainAGE) is the difference between the estimated age and the individual chronological age. BrainAGE was studied primarily using MRI techniques. EEG signals in combination with machine learning (ML) approaches were not commonly used for the human age prediction...
Autores principales: | Al Zoubi, Obada, Ki Wong, Chung, Kuplicki, Rayus T., Yeh, Hung-wen, Mayeli, Ahmad, Refai, Hazem, Paulus, Martin, Bodurka, Jerzy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036180/ https://www.ncbi.nlm.nih.gov/pubmed/30013472 http://dx.doi.org/10.3389/fnagi.2018.00184 |
Ejemplares similares
-
EEG Microstates Temporal Dynamics Differentiate Individuals with Mood and Anxiety Disorders From Healthy Subjects
por: Al Zoubi, Obada, et al.
Publicado: (2019) -
Automated pipeline for EEG artifact reduction (APPEAR) recorded during fMRI
por: Mayeli, Ahmad, et al.
Publicado: (2021) -
Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies
por: Kuplicki, Rayus, et al.
Publicado: (2021) -
Taking the body off the mind: Decreased functional connectivity between somatomotor and default‐mode networks following Floatation‐REST
por: Al Zoubi, Obada, et al.
Publicado: (2021) -
Parieto-occipital ERP indicators of gut mechanosensation in humans
por: Mayeli, Ahmad, et al.
Publicado: (2023)