Cargando…
Incorporation of Multiple-Days Information to Improve the Generalization of EEG-Based Emotion Recognition Over Time
Current studies have got a series of satisfying accuracies in EEG-based emotion classification, but most of the classifiers used in previous studies are totally time-limited. To produce generalizable results, the emotion classifier should be stable over days, in which the day-to-day variations of EE...
Autores principales: | Liu, Shuang, Chen, Long, Guo, Dongyue, Liu, Xiaoya, Sheng, Yue, Ke, Yufeng, Xu, Minpeng, An, Xingwei, Yang, Jiajia, Ming, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036248/ https://www.ncbi.nlm.nih.gov/pubmed/30013470 http://dx.doi.org/10.3389/fnhum.2018.00267 |
Ejemplares similares
-
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020) -
Enhanced Auditory Steady-State Response Using an Optimized Chirp Stimulus-Evoked Paradigm
por: Liu, Xiaoya, et al.
Publicado: (2019) -
The Effects of Transcranial Direct Current Stimulation (tDCS) on Working Memory Training in Healthy Young Adults
por: Ke, Yufeng, et al.
Publicado: (2019) -
Real-Time EEG-Based Emotion Recognition
por: Yu, Xiangkun, et al.
Publicado: (2023) -
Local domain generalization with low-rank constraint for EEG-based emotion recognition
por: Tao, Jianwen, et al.
Publicado: (2023)