Cargando…

Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia

A compounding feature of greater than 50% of all cancers is the high incidence of the cachexia syndrome, a complex metabolic disorder characterized by extreme weight loss due mainly to the gross depletion of skeletal muscle tissue. Although studies into the cause of cancer cachexia has spanned over...

Descripción completa

Detalles Bibliográficos
Autores principales: Damrauer, Jeffrey S., Stadler, Michael E., Acharyya, Swarnali, Baldwin, Albert S., Couch, Marion E., Guttridge, Denis C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications, Pavia, Italy 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036305/
https://www.ncbi.nlm.nih.gov/pubmed/29991992
http://dx.doi.org/10.4081/ejtm.2018.7590
Descripción
Sumario:A compounding feature of greater than 50% of all cancers is the high incidence of the cachexia syndrome, a complex metabolic disorder characterized by extreme weight loss due mainly to the gross depletion of skeletal muscle tissue. Although studies into the cause of cancer cachexia has spanned over multiple decades, little is known about the effects of various cancer treatments themselves on cachexia. For example, chemotherapy agents induce side effects such as nausea and anorexia, but these symptoms do not fully account for the changes seen with cancer cachexia. In this study we examine the effects of chemotherapeutic compounds, specifically, cisplatin in the colon-26 adenocarcinoma model of cancer cachexia. We find that although cisplatin is able to reduce tumor burden as expected, muscle wasting in mice nevertheless persists. Strikingly, cisplatin alone was seen to regulate muscle atrophy, which was independent of the commonly implicated ubiquitin proteasome system. Finally, we show that cisplatin is able to induce NF-κB activity in both mouse muscles and myotube cultures, suggesting that an additional side effect of cancer treatment is the regulation of muscle wasting that may be mediated through activation of the NF-κB signaling pathway.