Cargando…
Improving Prediction of Self-interacting Proteins Using Stacked Sparse Auto-Encoder with PSSM profiles
Self-interacting proteins (SIPs) play a significant role in the execution of most important molecular processes in cells, such as signal transduction, gene expression regulation, immune response and enzyme activation. Although the traditional experimental methods can be used to generate SIPs data, i...
Autores principales: | Wang, Yan-Bin, You, Zhu-Hong, Li, Li-Ping, Huang, De-Shuang, Zhou, Feng-Feng, Yang, Shan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036743/ https://www.ncbi.nlm.nih.gov/pubmed/29989064 http://dx.doi.org/10.7150/ijbs.23817 |
Ejemplares similares
-
Stacked Sparse Auto-Encoders (SSAE) Based Electronic Nose for Chinese Liquors Classification
por: Zhao, Wei, et al.
Publicado: (2017) -
Variety Identification of Orchids Using Fourier Transform Infrared Spectroscopy Combined with Stacked Sparse Auto-Encoder
por: Chen, Yunfeng, et al.
Publicado: (2019) -
A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring
por: Ou, Jiayu, et al.
Publicado: (2020) -
Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier
por: Li, Zheng-Wei, et al.
Publicado: (2017) -
SNAREs-SAP: SNARE Proteins Identification With PSSM Profiles
por: Zhang, Zixiao, et al.
Publicado: (2021)