Cargando…
Light-Triggered Radiochemical Synthesis: A Novel (18)F-Labelling Strategy Using Photoinducible Click Reaction to Prepare PET Imaging Probes
Novel probe development for positron emission tomography (PET) is leading to expanding the scope of molecular imaging. To begin responding to challenges, several biomaterials such as natural products and small molecules, peptides, engineered proteins including affibodies, and antibodies have been us...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036826/ https://www.ncbi.nlm.nih.gov/pubmed/30046295 http://dx.doi.org/10.1155/2018/4617493 |
Sumario: | Novel probe development for positron emission tomography (PET) is leading to expanding the scope of molecular imaging. To begin responding to challenges, several biomaterials such as natural products and small molecules, peptides, engineered proteins including affibodies, and antibodies have been used in the development of targeted molecular imaging probes. To prepare radiotracers, a few bioactive materials are unique challenges to radiolabelling because of their complex structure, poor stability, poor solubility in aqueous or chemical organic solutions, and sensitivity to temperature and nonphysiological pH. To overcome these challenges, we developed a new radiolabelling strategy based on photoactivated 1,3-dipolar cycloaddition between alkene dipolarophile and tetrazole moiety containing compounds. Herein, we describe a light-triggered radiochemical synthesis via photoactivated click reaction to prepare (18)F-radiolabelled PET tracers using small molecular and RGD peptide. |
---|