Cargando…

Evaluation of post-fermentation heating times and temperatures for controlling Shiga toxin-producing Escherichia coli cells in a non-dried, pepperoni-type sausage

Coarse ground meat was mixed with non-meat ingredients and starter culture (Pediococcus acidilactici) and then inoculated with an 8-strain cocktail of Shiga toxin-producing Escherichia coli (ca. 7.0 log CFU/g). Batter was fine ground, stuffed into fibrous casings, and fermented at 35.6°C and ca. 85%...

Descripción completa

Detalles Bibliográficos
Autores principales: Shane, Laura E., Porto-Fett, Anna C.S., Shoyer, Bradley A., Phebus, Randall K., Thippareddi, Harshavardhan, Hallowell, Ashley, Miller, Kelsey, Foster-Bey, Lianna, Campano, Stephen G., Taormina, Peter J., Glowski, Daniel L., Tompkin, Robert B., Luchansky, John B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications, Pavia, Italy 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036999/
https://www.ncbi.nlm.nih.gov/pubmed/30046561
http://dx.doi.org/10.4081/ijfs.2018.7250
Descripción
Sumario:Coarse ground meat was mixed with non-meat ingredients and starter culture (Pediococcus acidilactici) and then inoculated with an 8-strain cocktail of Shiga toxin-producing Escherichia coli (ca. 7.0 log CFU/g). Batter was fine ground, stuffed into fibrous casings, and fermented at 35.6°C and ca. 85% RH to a final target pH of ca. pH 4.6 or ca. pH 5.0. After fermentation, the pepperoni-like sausage were heated to target internal temperatures of 37.8°, 43.3°, 48.9°, and 54.4°C and held for 0.5 to 12.5 h. Regardless of the heating temperature, the endpoint pH in products fermented to a target pH of pH 4.6 and pH 5.0 was pH 4.56±0.13 (range of pH 4.20 to pH 4.86) and pH 4.96±0.12 (range of pH 4.70 to pH 5.21), respectively. Fermentation alone delivered ca. a 0.3- to 1.2-log CFU/g reduction in pathogen numbers. Fermentation to ca. pH 4.6 or ca. pH 5.0 followed by post-fermentation heating to 37.8° to 54.4°C and holding for 0.5 to 12.5 h generated total reductions of ca. 2.0 to 6.7 log CFU/g.