Cargando…

Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics

Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterizati...

Descripción completa

Detalles Bibliográficos
Autores principales: Gobbi, Marco, Bonacchi, Sara, Lian, Jian X., Vercouter, Alexandre, Bertolazzi, Simone, Zyska, Björn, Timpel, Melanie, Tatti, Roberta, Olivier, Yoann, Hecht, Stefan, Nardi, Marco V., Beljonne, David, Orgiu, Emanuele, Samorì, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037738/
https://www.ncbi.nlm.nih.gov/pubmed/29985413
http://dx.doi.org/10.1038/s41467-018-04932-z
_version_ 1783338372136173568
author Gobbi, Marco
Bonacchi, Sara
Lian, Jian X.
Vercouter, Alexandre
Bertolazzi, Simone
Zyska, Björn
Timpel, Melanie
Tatti, Roberta
Olivier, Yoann
Hecht, Stefan
Nardi, Marco V.
Beljonne, David
Orgiu, Emanuele
Samorì, Paolo
author_facet Gobbi, Marco
Bonacchi, Sara
Lian, Jian X.
Vercouter, Alexandre
Bertolazzi, Simone
Zyska, Björn
Timpel, Melanie
Tatti, Roberta
Olivier, Yoann
Hecht, Stefan
Nardi, Marco V.
Beljonne, David
Orgiu, Emanuele
Samorì, Paolo
author_sort Gobbi, Marco
collection PubMed
description Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS(2) generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS(2), demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices.
format Online
Article
Text
id pubmed-6037738
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60377382018-07-11 Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics Gobbi, Marco Bonacchi, Sara Lian, Jian X. Vercouter, Alexandre Bertolazzi, Simone Zyska, Björn Timpel, Melanie Tatti, Roberta Olivier, Yoann Hecht, Stefan Nardi, Marco V. Beljonne, David Orgiu, Emanuele Samorì, Paolo Nat Commun Article Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS(2) generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS(2), demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices. Nature Publishing Group UK 2018-07-09 /pmc/articles/PMC6037738/ /pubmed/29985413 http://dx.doi.org/10.1038/s41467-018-04932-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gobbi, Marco
Bonacchi, Sara
Lian, Jian X.
Vercouter, Alexandre
Bertolazzi, Simone
Zyska, Björn
Timpel, Melanie
Tatti, Roberta
Olivier, Yoann
Hecht, Stefan
Nardi, Marco V.
Beljonne, David
Orgiu, Emanuele
Samorì, Paolo
Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics
title Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics
title_full Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics
title_fullStr Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics
title_full_unstemmed Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics
title_short Collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics
title_sort collective molecular switching in hybrid superlattices for light-modulated two-dimensional electronics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037738/
https://www.ncbi.nlm.nih.gov/pubmed/29985413
http://dx.doi.org/10.1038/s41467-018-04932-z
work_keys_str_mv AT gobbimarco collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT bonacchisara collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT lianjianx collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT vercouteralexandre collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT bertolazzisimone collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT zyskabjorn collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT timpelmelanie collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT tattiroberta collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT olivieryoann collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT hechtstefan collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT nardimarcov collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT beljonnedavid collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT orgiuemanuele collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics
AT samoripaolo collectivemolecularswitchinginhybridsuperlatticesforlightmodulatedtwodimensionalelectronics