Cargando…
An Approach Toward Automatic Classification of Tumor Histopathology of Non–Small Cell Lung Cancer Based on Radiomic Features
Non–small cell lung cancer contributes toward 85% of all lung cancer burden. Tumor histology (squamous cell carcinoma, large cell carcinoma, and adenocarcinoma and “not otherwise specified”) has prognostic significance, and it is therefore imperative to identify tumor histology for personalized medi...
Autores principales: | Patil, Ravindra, Mahadevaiah, Geetha, Dekker, Andre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037923/ https://www.ncbi.nlm.nih.gov/pubmed/30042968 http://dx.doi.org/10.18383/j.tom.2016.00244 |
Ejemplares similares
-
Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer
por: Yip, Stephen S. F., et al.
Publicado: (2017) -
Homology-Based Image Processing for Automatic Classification of Histopathological Images of Lung Tissue
por: Nishio, Mizuho, et al.
Publicado: (2021) -
An Open-Source COVID-19 CT Dataset with Automatic Lung Tissue Classification for Radiomics
por: Zaffino, Paolo, et al.
Publicado: (2021) -
Phenotyping the Histopathological Subtypes of Non-Small-Cell Lung Carcinoma: How Beneficial Is Radiomics?
por: Pasini, Giovanni, et al.
Publicado: (2023) -
Radiomic features analysis in computed tomography images of lung nodule classification
por: Chen, Chia-Hung, et al.
Publicado: (2018)