Cargando…
Nonlinear Predictive Threshold Model for Real-Time Abnormal Gait Detection
Falls are critical events for human health due to the associated risk of physical and psychological injuries. Several fall-related systems have been developed in order to reduce injuries. Among them, fall-risk prediction systems are one of the most promising approaches, as they strive to predict a f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038668/ https://www.ncbi.nlm.nih.gov/pubmed/30046416 http://dx.doi.org/10.1155/2018/4750104 |
Sumario: | Falls are critical events for human health due to the associated risk of physical and psychological injuries. Several fall-related systems have been developed in order to reduce injuries. Among them, fall-risk prediction systems are one of the most promising approaches, as they strive to predict a fall before its occurrence. A category of fall-risk prediction systems evaluates balance and muscle strength through some clinical functional assessment tests, while other prediction systems investigate the recognition of abnormal gait patterns to predict a fall in real time. The main contribution of this paper is a nonlinear model of user gait in combination with a threshold-based classification in order to recognize abnormal gait patterns with low complexity and high accuracy. In addition, a dataset with realistic parameters is prepared to simulate abnormal walks and to evaluate fall prediction methods. The accelerometer and gyroscope sensors available in a smartphone have been exploited to create the dataset. The proposed approach has been implemented and compared with the state-of-the-art approaches showing that it is able to predict an abnormal walk with a higher accuracy (93.5%) and a higher efficiency (up to 3.5 faster) than other feasible approaches. |
---|