Cargando…
Nonlinear Predictive Threshold Model for Real-Time Abnormal Gait Detection
Falls are critical events for human health due to the associated risk of physical and psychological injuries. Several fall-related systems have been developed in order to reduce injuries. Among them, fall-risk prediction systems are one of the most promising approaches, as they strive to predict a f...
Autores principales: | Hemmatpour, Masoud, Ferrero, Renato, Gandino, Filippo, Montrucchio, Bartolomeo, Rebaudengo, Maurizio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038668/ https://www.ncbi.nlm.nih.gov/pubmed/30046416 http://dx.doi.org/10.1155/2018/4750104 |
Ejemplares similares
-
A Mobile and Low-Cost System for Environmental Monitoring: A Case Study
por: Velasco, Alejandro, et al.
Publicado: (2016) -
Investigation of Interference Models for RFID Systems †
por: Zhang, Linchao, et al.
Publicado: (2016) -
An Investigation on Pervasive Technologies for IoT-based Thermal Monitoring
por: Giusto, Edoardo, et al.
Publicado: (2019) -
Self-Tuning Threshold Method for Real-Time Gait Phase Detection Based on Ground Contact Forces Using FSRs
por: Tang, Jing, et al.
Publicado: (2018) -
Skeleton-Based Abnormal Gait Detection
por: Nguyen, Trong-Nguyen, et al.
Publicado: (2016)