Cargando…
Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability
Effective transfer of genetic information during cell division requires a major reorganization of chromosome structure. This process is triggered by condensin, a conserved pentameric ATPase essential for chromosome condensation. How condensin harnesses the energy of ATP hydrolysis to promote chromat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039025/ https://www.ncbi.nlm.nih.gov/pubmed/29949571 http://dx.doi.org/10.1371/journal.pbio.2003980 |
_version_ | 1783338612923826176 |
---|---|
author | Palou, Roger Dhanaraman, Thillaivillalan Marrakchi, Rim Pascariu, Mirela Tyers, Mike D’Amours, Damien |
author_facet | Palou, Roger Dhanaraman, Thillaivillalan Marrakchi, Rim Pascariu, Mirela Tyers, Mike D’Amours, Damien |
author_sort | Palou, Roger |
collection | PubMed |
description | Effective transfer of genetic information during cell division requires a major reorganization of chromosome structure. This process is triggered by condensin, a conserved pentameric ATPase essential for chromosome condensation. How condensin harnesses the energy of ATP hydrolysis to promote chromatin reorganization is unknown. To address this issue, we performed a genetic screen specifically focused on the ATPase domain of Smc4, a core subunit of condensin. Our screen identified mutational hotspots that impair condensin’s ability to condense chromosomes to various degrees. These mutations have distinct effects on viability, genome stability, and chromosome morphology, revealing unique thresholds for condensin enzymatic activity in the execution of its cellular functions. Biochemical analyses indicate that inactivation of Smc4 ATPase activity can result in cell lethality because it favors a specific configuration of condensin that locks ATP in the enzyme. Together, our results provide critical insights into the mechanism used by condensin to harness the energy of ATP hydrolysis for the compaction of chromatin. |
format | Online Article Text |
id | pubmed-6039025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-60390252018-07-19 Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability Palou, Roger Dhanaraman, Thillaivillalan Marrakchi, Rim Pascariu, Mirela Tyers, Mike D’Amours, Damien PLoS Biol Research Article Effective transfer of genetic information during cell division requires a major reorganization of chromosome structure. This process is triggered by condensin, a conserved pentameric ATPase essential for chromosome condensation. How condensin harnesses the energy of ATP hydrolysis to promote chromatin reorganization is unknown. To address this issue, we performed a genetic screen specifically focused on the ATPase domain of Smc4, a core subunit of condensin. Our screen identified mutational hotspots that impair condensin’s ability to condense chromosomes to various degrees. These mutations have distinct effects on viability, genome stability, and chromosome morphology, revealing unique thresholds for condensin enzymatic activity in the execution of its cellular functions. Biochemical analyses indicate that inactivation of Smc4 ATPase activity can result in cell lethality because it favors a specific configuration of condensin that locks ATP in the enzyme. Together, our results provide critical insights into the mechanism used by condensin to harness the energy of ATP hydrolysis for the compaction of chromatin. Public Library of Science 2018-06-27 /pmc/articles/PMC6039025/ /pubmed/29949571 http://dx.doi.org/10.1371/journal.pbio.2003980 Text en © 2018 Palou et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Palou, Roger Dhanaraman, Thillaivillalan Marrakchi, Rim Pascariu, Mirela Tyers, Mike D’Amours, Damien Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability |
title | Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability |
title_full | Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability |
title_fullStr | Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability |
title_full_unstemmed | Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability |
title_short | Condensin ATPase motifs contribute differentially to the maintenance of chromosome morphology and genome stability |
title_sort | condensin atpase motifs contribute differentially to the maintenance of chromosome morphology and genome stability |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039025/ https://www.ncbi.nlm.nih.gov/pubmed/29949571 http://dx.doi.org/10.1371/journal.pbio.2003980 |
work_keys_str_mv | AT palouroger condensinatpasemotifscontributedifferentiallytothemaintenanceofchromosomemorphologyandgenomestability AT dhanaramanthillaivillalan condensinatpasemotifscontributedifferentiallytothemaintenanceofchromosomemorphologyandgenomestability AT marrakchirim condensinatpasemotifscontributedifferentiallytothemaintenanceofchromosomemorphologyandgenomestability AT pascariumirela condensinatpasemotifscontributedifferentiallytothemaintenanceofchromosomemorphologyandgenomestability AT tyersmike condensinatpasemotifscontributedifferentiallytothemaintenanceofchromosomemorphologyandgenomestability AT damoursdamien condensinatpasemotifscontributedifferentiallytothemaintenanceofchromosomemorphologyandgenomestability |