Cargando…
Automated data-adaptive analytics for electronic healthcare data to study causal treatment effects
BACKGROUND: Decision makers in health care increasingly rely on nonrandomized database analyses to assess the effectiveness, safety, and value of medical products. Health care data scientists use data-adaptive approaches that automatically optimize confounding control to study causal treatment effec...
Autor principal: | Schneeweiss, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039060/ https://www.ncbi.nlm.nih.gov/pubmed/30013400 http://dx.doi.org/10.2147/CLEP.S166545 |
Ejemplares similares
-
Big Data Analytics in Healthcare
por: Belle, Ashwin, et al.
Publicado: (2015) -
Data Analytics in Healthcare: A Tertiary Study
por: Taipalus, Toni, et al.
Publicado: (2022) -
A Framework for Visualizing Study Designs and Data Observability in Electronic Health Record Data
por: Wang, Shirley V, et al.
Publicado: (2022) -
Big Data Analytics in Medicine and Healthcare
por: Ristevski, Blagoj, et al.
Publicado: (2018) -
Healthcare data analytics
por: Reddy, Chandan K, et al.
Publicado: (2015)