Cargando…

Carotid artery ligation induced intimal thickening and proliferation is unaffected by ageing

Following interventions to treat atherosclerosis, such as coronary artery bypass graft surgery, restenosis occurs in approximately 40% of patients. Identification of proteins regulating intimal thickening could represent targets to prevent restenosis. Our group previously demonstrated that in a muri...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, B. A., Williams, H., Bond, A. R., Angelini, G. D., Johnson, J. L., George, S. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039339/
https://www.ncbi.nlm.nih.gov/pubmed/29185213
http://dx.doi.org/10.1007/s12079-017-0431-5
Descripción
Sumario:Following interventions to treat atherosclerosis, such as coronary artery bypass graft surgery, restenosis occurs in approximately 40% of patients. Identification of proteins regulating intimal thickening could represent targets to prevent restenosis. Our group previously demonstrated that in a murine model of vascular occlusion, Wnt4 protein expression and β-catenin signalling was upregulated which promoted vascular smooth muscle cell (VSMC) proliferation and intimal thickening. In this study, the effect of age on VSMC proliferation, intimal hyperplasia and Wnt4 expression was investigated. In vitro proliferation of VSMCs isolated from young (2 month) or old (18–20 month) C57BL6/J mice was assessed by immunocytochemistry for EdU incorporation. As previously reported, 400 ng/mL recombinant Wnt4 protein increased proliferation of VSMCs from young mice. However, this response was absent in VSMCs from old mice. As our group previously reported reduced intimal hyperplasia in Wnt4(+/−) mice compared to wildtype controls, we hypothesised that impaired Wnt4 signalling with age may result in reduced neointimal formation. To investigate this, carotid artery ligation was performed in young and old mice and neointimal area was assessed 21 days later. Surprisingly, neointimal area and percentage lumen occlusion were not significantly affected by age. Furthermore, neointimal cell density and proliferation were also unchanged. These data suggest that although Wnt4-mediated proliferation was impaired with age in primary VSMCs, carotid artery ligation induced neointimal formation and proliferation were unchanged in old mice. These results imply that Wnt4-mediated proliferation is unaffected by age in vivo, suggesting that therapeutic Wnt4 inhibition could inhibit restenosis in patients of all ages. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s12079-017-0431-5) contains supplementary material, which is available to authorized users.