Cargando…
Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome
Pathology images capture tumor histomorphological details in high resolution. However, manual detection and characterization of tumor regions in pathology images is labor intensive and subjective. Using a deep convolutional neural network (CNN), we developed an automated tumor region recognition sys...
Autores principales: | Wang, Shidan, Chen, Alyssa, Yang, Lin, Cai, Ling, Xie, Yang, Fujimoto, Junya, Gazdar, Adi, Xiao, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039531/ https://www.ncbi.nlm.nih.gov/pubmed/29991684 http://dx.doi.org/10.1038/s41598-018-27707-4 |
Ejemplares similares
-
Evaluation of the 7(th) and 8(th) editions of the AJCC/UICC TNM staging systems for lung cancer in a large North American cohort
por: Yang, Lin, et al.
Publicado: (2017) -
Artificial Intelligence in Lung Cancer Pathology Image Analysis
por: Wang, Shidan, et al.
Publicado: (2019) -
Development and Validation of a Pathology Image Analysis-based Predictive Model for Lung Adenocarcinoma Prognosis - A Multi-cohort Study
por: Luo, Xin, et al.
Publicado: (2019) -
Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer
por: Wang, Shidan, et al.
Publicado: (2023) -
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks
por: Yi, Faliu, et al.
Publicado: (2018)