Cargando…

Profiling of lung microbiota in the patients with obstructive sleep apnea

Lung microbiota may affect innate immunity and treatment consequence in the obstructive sleep apnea (OSA) patients. Bronchoalveolar lavage fluid (BALF) was obtained from 11 OSA patients and 8 patients with other lung diseases as control, and used for lung microbiota profiling by PCR amplification an...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Dongmei, Yao, Xiaoguang, Abulimiti, Ayinigeer, Cai, Li, Zhou, Ling, Hong, Jing, Li, Nanfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039595/
https://www.ncbi.nlm.nih.gov/pubmed/29952967
http://dx.doi.org/10.1097/MD.0000000000011175
Descripción
Sumario:Lung microbiota may affect innate immunity and treatment consequence in the obstructive sleep apnea (OSA) patients. Bronchoalveolar lavage fluid (BALF) was obtained from 11 OSA patients and 8 patients with other lung diseases as control, and used for lung microbiota profiling by PCR amplification and sequencing of the microbial samples. It was demonstrated that phyla of Firmicutes, Fusobacteria, and Bacteriodetes were relatively abundant in the lung microbiota. Alpha-diversity comparison between OSA and control group revealed that Proteobacteria and Fusobacteria were significantly higher in OSA patients (0.3863 ± 0.0631 and 0.0682 ± 0.0159, respectively) than that in control group (0.119 ± 0.074 and 0.0006 ± 0.0187, respectively, P < .05 for both phyla). In contrast, Firmicutes was significantly less in OSA patients (0.1371 ± 0.0394) compared with that in the control group (0.384 ± 0.046, P < .05). Comparison within a group (ß-diversity) indicated that the top 5 phyla in the OSA lung were Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Acidobacteria, while the top 5 phyla in the control group were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Acidobacteria. These findings indicated that lung microbiota in OSA is distinct from that of non-OSA patients. Manipulation of the microbiota may be an alternative strategy to augment airway immunity and to reduce susceptibility to airway infection.