Cargando…

Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2

Components of the Fanconi anemia and homologous recombination pathways play a vital role in protecting newly replicated DNA from uncontrolled nucleolytic degradation, safeguarding genome stability. Here we report that histone methylation by the lysine methyltransferase SETD1A is crucial for protecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Higgs, Martin R., Sato, Koichi, Reynolds, John J., Begum, Shabana, Bayley, Rachel, Goula, Amalia, Vernet, Audrey, Paquin, Karissa L., Skalnik, David G., Kobayashi, Wataru, Takata, Minoru, Howlett, Niall G., Kurumizaka, Hitoshi, Kimura, Hiroshi, Stewart, Grant S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039718/
https://www.ncbi.nlm.nih.gov/pubmed/29937342
http://dx.doi.org/10.1016/j.molcel.2018.05.018
_version_ 1783338729443688448
author Higgs, Martin R.
Sato, Koichi
Reynolds, John J.
Begum, Shabana
Bayley, Rachel
Goula, Amalia
Vernet, Audrey
Paquin, Karissa L.
Skalnik, David G.
Kobayashi, Wataru
Takata, Minoru
Howlett, Niall G.
Kurumizaka, Hitoshi
Kimura, Hiroshi
Stewart, Grant S.
author_facet Higgs, Martin R.
Sato, Koichi
Reynolds, John J.
Begum, Shabana
Bayley, Rachel
Goula, Amalia
Vernet, Audrey
Paquin, Karissa L.
Skalnik, David G.
Kobayashi, Wataru
Takata, Minoru
Howlett, Niall G.
Kurumizaka, Hitoshi
Kimura, Hiroshi
Stewart, Grant S.
author_sort Higgs, Martin R.
collection PubMed
description Components of the Fanconi anemia and homologous recombination pathways play a vital role in protecting newly replicated DNA from uncontrolled nucleolytic degradation, safeguarding genome stability. Here we report that histone methylation by the lysine methyltransferase SETD1A is crucial for protecting stalled replication forks from deleterious resection. Depletion of SETD1A sensitizes cells to replication stress and leads to uncontrolled DNA2-dependent resection of damaged replication forks. The ability of SETD1A to prevent degradation of these structures is mediated by its ability to catalyze methylation on Lys4 of histone H3 (H3K4) at replication forks, which enhances FANCD2-dependent histone chaperone activity. Suppressing H3K4 methylation or expression of a chaperone-defective FANCD2 mutant leads to loss of RAD51 nucleofilament stability and severe nucleolytic degradation of replication forks. Our work identifies epigenetic modification and histone mobility as critical regulatory mechanisms in maintaining genome stability by restraining nucleases from irreparably damaging stalled replication forks.
format Online
Article
Text
id pubmed-6039718
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-60397182018-07-12 Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2 Higgs, Martin R. Sato, Koichi Reynolds, John J. Begum, Shabana Bayley, Rachel Goula, Amalia Vernet, Audrey Paquin, Karissa L. Skalnik, David G. Kobayashi, Wataru Takata, Minoru Howlett, Niall G. Kurumizaka, Hitoshi Kimura, Hiroshi Stewart, Grant S. Mol Cell Article Components of the Fanconi anemia and homologous recombination pathways play a vital role in protecting newly replicated DNA from uncontrolled nucleolytic degradation, safeguarding genome stability. Here we report that histone methylation by the lysine methyltransferase SETD1A is crucial for protecting stalled replication forks from deleterious resection. Depletion of SETD1A sensitizes cells to replication stress and leads to uncontrolled DNA2-dependent resection of damaged replication forks. The ability of SETD1A to prevent degradation of these structures is mediated by its ability to catalyze methylation on Lys4 of histone H3 (H3K4) at replication forks, which enhances FANCD2-dependent histone chaperone activity. Suppressing H3K4 methylation or expression of a chaperone-defective FANCD2 mutant leads to loss of RAD51 nucleofilament stability and severe nucleolytic degradation of replication forks. Our work identifies epigenetic modification and histone mobility as critical regulatory mechanisms in maintaining genome stability by restraining nucleases from irreparably damaging stalled replication forks. Cell Press 2018-07-05 /pmc/articles/PMC6039718/ /pubmed/29937342 http://dx.doi.org/10.1016/j.molcel.2018.05.018 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Higgs, Martin R.
Sato, Koichi
Reynolds, John J.
Begum, Shabana
Bayley, Rachel
Goula, Amalia
Vernet, Audrey
Paquin, Karissa L.
Skalnik, David G.
Kobayashi, Wataru
Takata, Minoru
Howlett, Niall G.
Kurumizaka, Hitoshi
Kimura, Hiroshi
Stewart, Grant S.
Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2
title Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2
title_full Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2
title_fullStr Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2
title_full_unstemmed Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2
title_short Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2
title_sort histone methylation by setd1a protects nascent dna through the nucleosome chaperone activity of fancd2
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039718/
https://www.ncbi.nlm.nih.gov/pubmed/29937342
http://dx.doi.org/10.1016/j.molcel.2018.05.018
work_keys_str_mv AT higgsmartinr histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT satokoichi histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT reynoldsjohnj histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT begumshabana histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT bayleyrachel histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT goulaamalia histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT vernetaudrey histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT paquinkarissal histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT skalnikdavidg histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT kobayashiwataru histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT takataminoru histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT howlettniallg histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT kurumizakahitoshi histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT kimurahiroshi histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2
AT stewartgrants histonemethylationbysetd1aprotectsnascentdnathroughthenucleosomechaperoneactivityoffancd2