Cargando…
Genomic Prediction of Breeding Values Using a Subset of SNPs Identified by Three Machine Learning Methods
The analysis of large genomic data is hampered by issues such as a small number of observations and a large number of predictive variables (commonly known as “large P small N”), high dimensionality or highly correlated data structures. Machine learning methods are renowned for dealing with these pro...
Autores principales: | Li, Bo, Zhang, Nanxi, Wang, You-Gan, George, Andrew W., Reverter, Antonio, Li, Yutao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6039760/ https://www.ncbi.nlm.nih.gov/pubmed/30023001 http://dx.doi.org/10.3389/fgene.2018.00237 |
Ejemplares similares
-
Genetic diversity and breed-informative SNPs identification in domestic pig populations using coding SNPs
por: Hayah, Ichrak, et al.
Publicado: (2023) -
Identification of Predictor Genes for Feed Efficiency in Beef Cattle by Applying Machine Learning Methods to Multi-Tissue Transcriptome Data
por: Chen, Weihao, et al.
Publicado: (2021) -
A Bioinformatics Pipeline to Identify a Subset of SNPs for Genomics-Assisted Potato Breeding
por: Selga, Catja, et al.
Publicado: (2020) -
Genetic Diversity and Signatures of Selection in 15 Chinese Indigenous Dog Breeds Revealed by Genome-Wide SNPs
por: Yang, Qianyong, et al.
Publicado: (2019) -
Identifying Pleiotropic SNPs Associated With Femoral Neck and Heel Bone Mineral Density
por: He, Pei, et al.
Publicado: (2020)