Cargando…
An Improved Kernel Credal Classification Algorithm Based on Regularized Mahalanobis Distance: Application to Microarray Data Analysis
Within the kernel methods, an improved kernel credal classification algorithm (KCCR) has been proposed. The KCCR algorithm uses the Euclidean distance in the kernel function. In this article, we propose to replace the Euclidean distance in the kernel with a regularized Mahalanobis metric. The Mahala...
Autores principales: | EL bendadi, Khawla, Lakhdar, Yissam, Sbai, El Hassan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040306/ https://www.ncbi.nlm.nih.gov/pubmed/30050567 http://dx.doi.org/10.1155/2018/7525786 |
Ejemplares similares
-
Binary Credal Classification Under Sparsity Constraints
por: Basu, Tathagata, et al.
Publicado: (2020) -
C R Rao and Mahalanobis’ distance
por: Chaudhuri, Probal
Publicado: (2020) -
Modified Mahalanobis Taguchi System for Imbalance Data Classification
por: El-Banna, Mahmoud
Publicado: (2017) -
Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
por: Yao, Leehter, et al.
Publicado: (2021) -
Kernel-based distance metric learning for microarray data classification
por: Xiong, Huilin, et al.
Publicado: (2006)