Cargando…
Alkali-metal-adsorbed g-GaN monolayer: ultralow work functions and optical properties
The electronic and optical properties of alkali-metal-adsorbed graphene-like gallium nitride (g-GaN) have been investigated using density functional theory. The results denote that alkali-metal-adsorbed g-GaN systems are stable compounds, with the most stable adsorption site being the center of the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041225/ https://www.ncbi.nlm.nih.gov/pubmed/29995262 http://dx.doi.org/10.1186/s11671-018-2625-z |
Sumario: | The electronic and optical properties of alkali-metal-adsorbed graphene-like gallium nitride (g-GaN) have been investigated using density functional theory. The results denote that alkali-metal-adsorbed g-GaN systems are stable compounds, with the most stable adsorption site being the center of the hexagonal ring. In addition, because of charge transfer from the alkali-metal atom to the host, the g-GaN layer shows clear n-type doping behavior. The adsorption of alkali metal atoms on g-GaN occurs via chemisorption. More importantly, the work function of g-GaN is substantially reduced following the adsorption of alkali-metal atoms. Specifically, the Cs-adsorbed g-GaN system shows an ultralow work function of 0.84 eV, which has great potential application in field-emission devices. In addition, the alkali-metal adsorption can lead to an increase in the static dielectric constant and extend the absorption spectrum of g-GaN. |
---|