Cargando…

Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase

Despite their popularity as enzyme engineering targets structural information about Sucrose Phosphorylases remains scarce. We recently clarified that the Q345F variant of Bifidobacterium adolescentis Sucrose Phosphorylase is able to accept large polyphenolic substrates like resveratrol via a domain...

Descripción completa

Detalles Bibliográficos
Autores principales: Kraus, Michael, Grimm, Clemens, Seibel, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041289/
https://www.ncbi.nlm.nih.gov/pubmed/29993032
http://dx.doi.org/10.1038/s41598-018-28802-2
Descripción
Sumario:Despite their popularity as enzyme engineering targets structural information about Sucrose Phosphorylases remains scarce. We recently clarified that the Q345F variant of Bifidobacterium adolescentis Sucrose Phosphorylase is able to accept large polyphenolic substrates like resveratrol via a domain shift. Here we present a crystal structure of this variant in a conformation suitable for the accommodation of the donor substrate sucrose in excellent agreement with the wild type structure. Remarkably, this conformation does not feature the previously observed domain shift which is therefore reversible and part of a dynamic process rather than a static phenomenon. This crystallographic snapshot completes our understanding of the catalytic cycle of this useful variant and will allow for a more rational design of further generations of Sucrose Phosphorylase variants.