Cargando…
Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection
The World Health Organization (WHO) estimates that 40% of tuberculosis (TB) cases are not diagnosed and treated correctly. Even though there are several diagnostic tests available in the market, rapid, easy, inexpensive detection, and drug susceptibility testing (DST) of Mycobacterium tuberculosis i...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041418/ https://www.ncbi.nlm.nih.gov/pubmed/30026735 http://dx.doi.org/10.3389/fmicb.2018.01471 |
_version_ | 1783338991951544320 |
---|---|
author | Rondón, Liliana Urdániz, Estefanía Latini, Cecilia Payaslian, Florencia Matteo, Mario Sosa, Ezequiel J. Do Porto, Darío F. Turjanski, Adrian G. Nemirovsky, Sergio Hatfull, Graham F. Poggi, Susana Piuri, Mariana |
author_facet | Rondón, Liliana Urdániz, Estefanía Latini, Cecilia Payaslian, Florencia Matteo, Mario Sosa, Ezequiel J. Do Porto, Darío F. Turjanski, Adrian G. Nemirovsky, Sergio Hatfull, Graham F. Poggi, Susana Piuri, Mariana |
author_sort | Rondón, Liliana |
collection | PubMed |
description | The World Health Organization (WHO) estimates that 40% of tuberculosis (TB) cases are not diagnosed and treated correctly. Even though there are several diagnostic tests available in the market, rapid, easy, inexpensive detection, and drug susceptibility testing (DST) of Mycobacterium tuberculosis is still of critical importance specially in low and middle-income countries with high incidence of the disease. In this work, we have developed a microscopy-based methodology using the reporter mycobacteriophage mCherry(bomb)ϕ for detection of Mycobacterium spp. and phenotypic determination of rifampicin resistance within just days from sputum sample collection. Fluoromycobacteriophage methodology is compatible with regularly used protocols in clinical laboratories for TB diagnosis and paraformaldehyde fixation after infection reduces biohazard risks with sample analysis by fluorescence microscopy. We have also set up conditions for discrimination between M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains by addition of p-nitrobenzoic acid (PNB) during the assay. Using clinical isolates of pre-XDR and XDR-TB strains from this study, we tested mCherry(bomb)Φ for extended DST and we compared the antibiotic resistance profile with those predicted by whole genome sequencing. Our results emphasize the utility of a phenotypic test for M. tuberculosis extended DST. The many attributes of mCherry(bomb)Φ suggests this could be a useful component of clinical microbiological laboratories for TB diagnosis and since only viable cells are detected this could be a useful tool for monitoring patient response to treatment. |
format | Online Article Text |
id | pubmed-6041418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60414182018-07-19 Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection Rondón, Liliana Urdániz, Estefanía Latini, Cecilia Payaslian, Florencia Matteo, Mario Sosa, Ezequiel J. Do Porto, Darío F. Turjanski, Adrian G. Nemirovsky, Sergio Hatfull, Graham F. Poggi, Susana Piuri, Mariana Front Microbiol Microbiology The World Health Organization (WHO) estimates that 40% of tuberculosis (TB) cases are not diagnosed and treated correctly. Even though there are several diagnostic tests available in the market, rapid, easy, inexpensive detection, and drug susceptibility testing (DST) of Mycobacterium tuberculosis is still of critical importance specially in low and middle-income countries with high incidence of the disease. In this work, we have developed a microscopy-based methodology using the reporter mycobacteriophage mCherry(bomb)ϕ for detection of Mycobacterium spp. and phenotypic determination of rifampicin resistance within just days from sputum sample collection. Fluoromycobacteriophage methodology is compatible with regularly used protocols in clinical laboratories for TB diagnosis and paraformaldehyde fixation after infection reduces biohazard risks with sample analysis by fluorescence microscopy. We have also set up conditions for discrimination between M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains by addition of p-nitrobenzoic acid (PNB) during the assay. Using clinical isolates of pre-XDR and XDR-TB strains from this study, we tested mCherry(bomb)Φ for extended DST and we compared the antibiotic resistance profile with those predicted by whole genome sequencing. Our results emphasize the utility of a phenotypic test for M. tuberculosis extended DST. The many attributes of mCherry(bomb)Φ suggests this could be a useful component of clinical microbiological laboratories for TB diagnosis and since only viable cells are detected this could be a useful tool for monitoring patient response to treatment. Frontiers Media S.A. 2018-07-05 /pmc/articles/PMC6041418/ /pubmed/30026735 http://dx.doi.org/10.3389/fmicb.2018.01471 Text en Copyright © 2018 Rondón, Urdániz, Latini, Payaslian, Matteo, Sosa, Do Porto, Turjanski, Nemirovsky, Hatfull, Poggi and Piuri. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Rondón, Liliana Urdániz, Estefanía Latini, Cecilia Payaslian, Florencia Matteo, Mario Sosa, Ezequiel J. Do Porto, Darío F. Turjanski, Adrian G. Nemirovsky, Sergio Hatfull, Graham F. Poggi, Susana Piuri, Mariana Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection |
title | Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection |
title_full | Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection |
title_fullStr | Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection |
title_full_unstemmed | Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection |
title_short | Fluoromycobacteriophages Can Detect Viable Mycobacterium tuberculosis and Determine Phenotypic Rifampicin Resistance in 3–5 Days From Sputum Collection |
title_sort | fluoromycobacteriophages can detect viable mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3–5 days from sputum collection |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041418/ https://www.ncbi.nlm.nih.gov/pubmed/30026735 http://dx.doi.org/10.3389/fmicb.2018.01471 |
work_keys_str_mv | AT rondonliliana fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT urdanizestefania fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT latinicecilia fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT payaslianflorencia fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT matteomario fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT sosaezequielj fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT doportodariof fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT turjanskiadriang fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT nemirovskysergio fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT hatfullgrahamf fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT poggisusana fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection AT piurimariana fluoromycobacteriophagescandetectviablemycobacteriumtuberculosisanddeterminephenotypicrifampicinresistancein35daysfromsputumcollection |