Cargando…
Multicontact Co-operativity in Spike-Timing–Dependent Structural Plasticity Stabilizes Networks
Excitatory synaptic connections in the adult neocortex consist of multiple synaptic contacts, almost exclusively formed on dendritic spines. Changes of spine volume, a correlate of synaptic strength, can be tracked in vivo for weeks. Here, we present a combined model of structural and spike-timing–d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041941/ https://www.ncbi.nlm.nih.gov/pubmed/29300903 http://dx.doi.org/10.1093/cercor/bhx339 |
Sumario: | Excitatory synaptic connections in the adult neocortex consist of multiple synaptic contacts, almost exclusively formed on dendritic spines. Changes of spine volume, a correlate of synaptic strength, can be tracked in vivo for weeks. Here, we present a combined model of structural and spike-timing–dependent plasticity that explains the multicontact configuration of synapses in adult neocortical networks under steady-state and lesion-induced conditions. Our plasticity rule with Hebbian and anti-Hebbian terms stabilizes both the postsynaptic firing rate and correlations between the pre- and postsynaptic activity at an active synaptic contact. Contacts appear spontaneously at a low rate and disappear if their strength approaches zero. Many presynaptic neurons compete to make strong synaptic connections onto a postsynaptic neuron, whereas the synaptic contacts of a given presynaptic neuron co-operate via postsynaptic firing. We find that co-operation of multiple synaptic contacts is crucial for stable, long-term synaptic memories. In simulations of a simplified network model of barrel cortex, our plasticity rule reproduces whisker-trimming–induced rewiring of thalamocortical and recurrent synaptic connectivity on realistic time scales. |
---|