Cargando…
Exploiting and assessing multi-source data for supervised biomedical named entity recognition
MOTIVATION: Recognition of biomedical entities from scientific text is a critical component of natural language processing and automated information extraction platforms. Modern named entity recognition approaches rely heavily on supervised machine learning techniques, which are critically dependent...
Autores principales: | Galea, Dieter, Laponogov, Ivan, Veselkov, Kirill |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041968/ https://www.ncbi.nlm.nih.gov/pubmed/29538614 http://dx.doi.org/10.1093/bioinformatics/bty152 |
Ejemplares similares
-
Biomedical named entity recognition based on fusion multi-features embedding
por: Li, Meijing, et al.
Publicado: (2023) -
Various criteria in the evaluation of biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
Comparison of named entity recognition methodologies in biomedical documents
por: Song, Hye-Jeong, et al.
Publicado: (2018) -
Towards reliable named entity recognition in the biomedical domain
por: Giorgi, John M, et al.
Publicado: (2020) -
Improving biomedical named entity recognition with syntactic information
por: Tian, Yuanhe, et al.
Publicado: (2020)