Cargando…
A new approach for interpreting Random Forest models and its application to the biology of ageing
MOTIVATION: This work uses the Random Forest (RF) classification algorithm to predict if a gene is over-expressed, under-expressed or has no change in expression with age in the brain. RFs have high predictive power, and RF models can be interpreted using a feature (variable) importance measure. How...
Autores principales: | Fabris, Fabio, Doherty, Aoife, Palmer, Daniel, de Magalhães, João Pedro, Freitas, Alex A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041990/ https://www.ncbi.nlm.nih.gov/pubmed/29462247 http://dx.doi.org/10.1093/bioinformatics/bty087 |
Ejemplares similares
-
Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues
por: Palmer, Daniel, et al.
Publicado: (2021) -
A review of supervised machine learning applied to ageing research
por: Fabris, Fabio, et al.
Publicado: (2017) -
Using deep learning to associate human genes with age-related diseases
por: Fabris, Fabio, et al.
Publicado: (2020) -
Predicting lifespan-extending chemical compounds for C. elegans with machine learning and biologically interpretable features
por: Ribeiro, Caio, et al.
Publicado: (2023) -
A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related
por: Freitas, Alex A, et al.
Publicado: (2011)