Cargando…
Design and development of ICCA as a dual inhibitor of GPIIb/IIIa and P-selectin receptors
BACKGROUND: The impact of upregulation of platelet membrane glycoprotein (GP)IIb/IIIa and P-selectin on the onset of arterial thrombosis, venous thrombosis, and cancer encourages to hypothesize that dual inhibitor of GPIIb/IIIa and P-selectin receptors should simultaneously inhibit arterial thrombos...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042529/ https://www.ncbi.nlm.nih.gov/pubmed/30022809 http://dx.doi.org/10.2147/DDDT.S169238 |
Sumario: | BACKGROUND: The impact of upregulation of platelet membrane glycoprotein (GP)IIb/IIIa and P-selectin on the onset of arterial thrombosis, venous thrombosis, and cancer encourages to hypothesize that dual inhibitor of GPIIb/IIIa and P-selectin receptors should simultaneously inhibit arterial thrombosis, block venous thrombosis, and slow tumor growth. METHODS: For this reason, the structural characteristics and the CDOCKER interaction energies of 12 carbolines were analyzed. This led to the design of 1-(4-isopropyl-phenyl)-β-carboline-3-carboxylic acid (ICCA) as a promising inhibitor of GPIIb/IIIa and P-selectin receptors. RESULTS: The synthetic route provided ICCA in 48% total yield and 99.6% high-performance liquid chromatography purity. In vivo 5 μmol/kg oral ICCA downregulated GPIIb/IIIa and P-selectin expression thereby inhibited arterial thrombosis, blocked venous thrombosis, and slowed down tumor growth, but did not damage the kidney and the liver. CONCLUSION: Therefore, ICCA could be a promising candidate capable of downregulating GPIIb/IIIa and P-selectin receptors, inhibiting arterial thrombosis, blocking venous thrombosis, and slowing down tumor growth. |
---|