Cargando…
Mining patterns of comorbidity evolution in patients with multiple chronic conditions using unsupervised multi-level temporal Bayesian network
Over the past few decades, the rise of multiple chronic conditions has become a major concern for clinicians. However, it is still not known precisely how multiple chronic conditions emerge among patients. We propose an unsupervised multi-level temporal Bayesian network to provide a compact represen...
Autores principales: | Faruqui, Syed Hasib Akhter, Alaeddini, Adel, Jaramillo, Carlos A., Potter, Jennifer S., Pugh, Mary Jo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6042705/ https://www.ncbi.nlm.nih.gov/pubmed/30001371 http://dx.doi.org/10.1371/journal.pone.0199768 |
Ejemplares similares
-
A Functional Model for Structure Learning and Parameter Estimation in Continuous Time Bayesian Network: An Application in Identifying Patterns of Multiple Chronic Conditions
por: FARUQUI, SYED HASIB AKHTER, et al.
Publicado: (2021) -
Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
por: Faruqui, Syed Hasib Akhter, et al.
Publicado: (2020) -
Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial
por: Faruqui, Syed Hasib Akhter, et al.
Publicado: (2019) -
Temporal data mining via unsupervised ensemble learning
por: Yang, Yun
Publicado: (2016) -
Bayesian inference and unsupervised ML @ Four-tops
por: Alvarez de los Alvarez de San Luis, Ezequiel
Publicado: (2021)